Blog
About

10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cytochrome P450-generated metabolites derived from ω-3 fatty acids attenuate neovascularization.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ocular neovascularization, including age-related macular degeneration (AMD), is a primary cause of blindness in individuals of industrialized countries. With a projected increase in the prevalence of these blinding neovascular diseases, there is an urgent need for new pharmacological interventions for their treatment or prevention. Increasing evidence has implicated eicosanoid-like metabolites of long-chain polyunsaturated fatty acids (LCPUFAs) in the regulation of neovascular disease. In particular, metabolites generated by the cytochrome P450 (CYP)-epoxygenase pathway have been shown to be potent modulators of angiogenesis, making this pathway a reasonable previously unidentified target for intervention in neovascular ocular disease. Here we show that dietary supplementation with ω-3 LCPUFAs promotes regression of choroidal neovessels in a well-characterized mouse model of neovascular AMD. Leukocyte recruitment and adhesion molecule expression in choroidal neovascular lesions were down-regulated in mice fed ω-3 LCPUFAs. The serum of these mice showed increased levels of anti-inflammatory eicosanoids derived from eicosapentaenoic acid and docosahexaenoic acid. 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid, the major CYP-generated metabolites of these primary ω-3 LCPUFAs, were identified as key lipid mediators of disease resolution. We conclude that CYP-derived bioactive lipid metabolites from ω-3 LCPUFAs are potent inhibitors of intraocular neovascular disease and show promising therapeutic potential for resolution of neovascular AMD.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          Points of control in inflammation.

           Carl Nathan (2015)
          Inflammation is a complex set of interactions among soluble factors and cells that can arise in any tissue in response to traumatic, infectious, post-ischaemic, toxic or autoimmune injury. The process normally leads to recovery from infection and to healing, However, if targeted destruction and assisted repair are not properly phased, inflammation can lead to persistent tissue damage by leukocytes, lymphocytes or collagen. Inflammation may be considered in terms of its checkpoints, where binary or higher-order signals drive each commitment to escalate, go signals trigger stop signals, and molecules responsible for mediating the inflammatory response also suppress it, depending on timing and context. The non-inflammatory state does not arise passively from an absence of inflammatory stimuli; rather, maintenance of health requires the positive actions of specific gene products to suppress reactions to potentially inflammatory stimuli that do not warrant a full response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pegaptanib for neovascular age-related macular degeneration.

             ,  A Adamis,  Brian Cunningham (2004)
            Pegaptanib, an anti-vascular endothelial growth factor therapy, was evaluated in the treatment of neovascular age-related macular degeneration. We conducted two concurrent, prospective, randomized, double-blind, multicenter, dose-ranging, controlled clinical trials using broad entry criteria. Intravitreous injection into one eye per patient of pegaptanib (at a dose of 0.3 mg, 1.0 mg, or 3.0 mg) or sham injections were administered every 6 weeks over a period of 48 weeks. The primary end point was the proportion of patients who had lost fewer than 15 letters of visual acuity at 54 weeks. In the combined analysis of the primary end point (for a total of 1186 patients), efficacy was demonstrated, without a dose-response relationship, for all three doses of pegaptanib (P<0.001 for the comparison of 0.3 mg with sham injection; P<0.001 for the comparison of 1.0 mg with sham injection; and P=0.03 for the comparison of 3.0 mg with sham injection). In the group given pegaptanib at 0.3 mg, 70 percent of patients lost fewer than 15 letters of visual acuity, as compared with 55 percent among the controls (P<0.001). The risk of severe loss of visual acuity (loss of 30 letters or more) was reduced from 22 percent in the sham-injection group to 10 percent in the group receiving 0.3 mg of pegaptanib (P<0.001). More patients receiving pegaptanib (0.3 mg), as compared with sham injection, maintained their visual acuity or gained acuity (33 percent vs. 23 percent; P=0.003). As early as six weeks after beginning therapy with the study drug, and at all subsequent points, the mean visual acuity among patients receiving 0.3 mg of pegaptanib was better than in those receiving sham injections (P<0.002). Among the adverse events that occurred, endophthalmitis (in 1.3 percent of patients), traumatic injury to the lens (in 0.7 percent), and retinal detachment (in 0.6 percent) were the most serious and required vigilance. These events were associated with a severe loss of visual acuity in 0.1 percent of patients. Pegaptanib appears to be an effective therapy for neovascular age-related macular degeneration. Its long-term safety is not known. Copyright 2004 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune and inflammatory mechanisms of atherosclerosis (*).

              Atherosclerosis is an inflammatory disease of the wall of large- and medium-sized arteries that is precipitated by elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. Although dendritic cells (DCs) and lymphocytes are found in the adventitia of normal arteries, their number is greatly expanded and their distribution changed in human and mouse atherosclerotic arteries. Macrophages, DCs, foam cells, lymphocytes, and other inflammatory cells are found in the intimal atherosclerotic lesions. Beneath these lesions, adventitial leukocytes organize in clusters that resemble tertiary lymphoid tissues. Experimental interventions can reduce the number of available blood monocytes, from which macrophages and most DCs and foam cells are derived, and reduce atherosclerotic lesion burden without altering blood lipids. Under proatherogenic conditions, nitric oxide production from endothelial cells is reduced and the burden of reactive oxygen species (ROS) and advanced glycation end products (AGE) is increased. Incapacitating ROS-generating NADPH oxidase or the receptor for AGE (RAGE) has beneficial effects. Targeting inflammatory adhesion molecules also reduces atherosclerosis. Conversely, removing or blocking IL-10 or TGF-beta accelerates atherosclerosis. Regulatory T cells and B1 cells secreting natural antibodies are atheroprotective. This review summarizes our current understanding of inflammatory and immune mechanisms in atherosclerosis.
                Bookmark

                Author and article information

                Journal
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences of the United States of America
                1091-6490
                0027-8424
                Jul 1 2014
                : 111
                : 26
                Affiliations
                [1 ] Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114;
                [2 ] Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan;
                [3 ] Lipidomix GmbH, Berlin 13125, Germany; and.
                [4 ] Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.
                [5 ] Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114; kip_connor@meei.harvard.edu.
                Article
                1401191111
                10.1073/pnas.1401191111
                24979774

                Comments

                Comment on this article