10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An approach to suppress the evolution of resistance in BRAF V600E-mutant cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The principles governing evolution of tumors exposed to targeted therapy are poorly understood. Here we modeled the selection and propagation of BRAF amplification ( BRAF amp) in patient-derived tumor xenografts (PDX) treated with a direct ERK inhibitor, alone or in combination with other pathway inhibitors. Single cell sequencing and multiplex-fluorescence in situ hybridization mapped the emergence of extra-chromosomal amplification in parallel evolutionary tracts, arising in the same tumor shortly after treatment. The evolutionary selection of BRAF amp is determined by the fitness threshold, the barrier subclonal populations need to overcome to regain fitness in the presence of therapy. This differed for ERK signaling inhibitors, suggesting that sequential monotherapy is ineffective and selects for a progressively higher BRAF copy number. Concurrent targeting of RAF, MEK and ERK, however, imposes a sufficiently high fitness threshold to prevent the propagation of subclones with high-level amplification. Administered on an intermittent schedule, this treatment inhibited tumor growth in 11/11-lung cancer and melanoma PDX without apparent toxicity in mice. Thus, gene amplification can be acquired and expanded through parallel evolution, enabling tumors to adapt while maintaining their intratumoral heterogeneity. Treatments that impose the highest fitness threshold will likely prevent the evolution of resistance-causing alterations and merit testing in patients.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.

          The combined inhibition of BRAF and MEK is hypothesized to improve clinical outcomes in patients with melanoma by preventing or delaying the onset of resistance observed with BRAF inhibitors alone. This randomized phase 3 study evaluated the combination of the BRAF inhibitor vemurafenib and the MEK inhibitor cobimetinib. We randomly assigned 495 patients with previously untreated unresectable locally advanced or metastatic BRAF V600 mutation-positive melanoma to receive vemurafenib and cobimetinib (combination group) or vemurafenib and placebo (control group). The primary end point was investigator-assessed progression-free survival. The median progression-free survival was 9.9 months in the combination group and 6.2 months in the control group (hazard ratio for death or disease progression, 0.51; 95% confidence interval [CI], 0.39 to 0.68; P<0.001). The rate of complete or partial response in the combination group was 68%, as compared with 45% in the control group (P<0.001), including rates of complete response of 10% in the combination group and 4% in the control group. Progression-free survival as assessed by independent review was similar to investigator-assessed progression-free survival. Interim analyses of overall survival showed 9-month survival rates of 81% (95% CI, 75 to 87) in the combination group and 73% (95% CI, 65 to 80) in the control group. Vemurafenib and cobimetinib was associated with a nonsignificantly higher incidence of adverse events of grade 3 or higher, as compared with vemurafenib and placebo (65% vs. 59%), and there was no significant difference in the rate of study-drug discontinuation. The number of secondary cutaneous cancers decreased with the combination therapy. The addition of cobimetinib to vemurafenib was associated with a significant improvement in progression-free survival among patients with BRAF V600-mutated metastatic melanoma, at the cost of some increase in toxicity. (Funded by F. Hoffmann-La Roche/Genentech; coBRIM ClinicalTrials.gov number, NCT01689519.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma.

            Treatment of BRAF(V600E) mutant melanoma by small molecule drugs that target the BRAF or MEK kinases can be effective, but resistance develops invariably. In contrast, colon cancers that harbour the same BRAF(V600E) mutation are intrinsically resistant to BRAF inhibitors, due to feedback activation of the epidermal growth factor receptor (EGFR). Here we show that 6 out of 16 melanoma tumours analysed acquired EGFR expression after the development of resistance to BRAF or MEK inhibitors. Using a chromatin-regulator-focused short hairpin RNA (shRNA) library, we find that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes activation of TGF-β signalling, thus leading to upregulation of EGFR and platelet-derived growth factor receptor-β (PDGFRB), which confer resistance to BRAF and MEK inhibitors. Expression of EGFR in melanoma or treatment with TGF-β results in a slow-growth phenotype with cells displaying hallmarks of oncogene-induced senescence. However, EGFR expression or exposure to TGF-β becomes beneficial for proliferation in the presence of BRAF or MEK inhibitors. In a heterogeneous population of melanoma cells having varying levels of SOX10 suppression, cells with low SOX10 and consequently high EGFR expression are rapidly enriched in the presence of drug, but this is reversed when the drug treatment is discontinued. We find evidence for SOX10 loss and/or activation of TGF-β signalling in 4 of the 6 EGFR-positive drug-resistant melanoma patient samples. Our findings provide a rationale for why some BRAF or MEK inhibitor-resistant melanoma patients may regain sensitivity to these drugs after a 'drug holiday' and identify patients with EGFR-positive melanoma as a group that may benefit from re-treatment after a drug holiday.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterizing the cancer genome in lung adenocarcinoma.

              Somatic alterations in cellular DNA underlie almost all human cancers. The prospect of targeted therapies and the development of high-resolution, genome-wide approaches are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in approximately 12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.
                Bookmark

                Author and article information

                Journal
                9502015
                8791
                Nat Med
                Nat. Med.
                Nature medicine
                1078-8956
                1546-170X
                5 September 2017
                17 July 2017
                August 2017
                17 January 2018
                : 23
                : 8
                : 929-937
                Affiliations
                [1 ]Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
                [2 ]Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY
                [3 ]Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
                [4 ]Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
                [5 ]Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
                [6 ]NantOmics, Rockville, MD
                [7 ]Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
                [8 ]Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
                [9 ]Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
                [10 ]Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
                [11 ]Weill Cornell Medical College, Cornell University, New York, New York, USA
                Author notes
                [+ ]Correspondence should be addressed to P.L. ( litop@ 123456mskcc.org )
                [12]

                Present address: School of Clinical Sciences, Monash University, Clayton, Australia

                [*]

                These authors contributed equally to this work

                Article
                NIHMS885615
                10.1038/nm.4369
                5696266
                28714990
                cd4ba088-3bb3-4c57-bd81-7a54ef08926a

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article