11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler chickens in a necrotic enteritis challenge

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          It was hypothesized that dietary inclusion of Bacillus subtilis DSM 32315 could inhibit Clostridium perfringens induced necrotic enteritis (NE), thereby improving broiler performance. Male, d 0 chicks were randomly assigned 14 birds/pen, 11 pens/treatment in 3 treatments: a basal diet (control), a coccidiostat fed control (Narasin), and a direct fed microbial (DFM) B. subtilis DSM 32315 treatment. Necrotic enteritis was induced in all birds by oral inoculation of Eimeria maxima oocysts on d 12 and a virulent C. perfringens on d 16. Mortality was reduced ( P < 0.001) in DFM and Narasin compared to control. DFM reduced ( P < 0.001) feed conversion ratio (FCR) compared to control. Furthermore, DFM and Narasin reduced ( P < 0.001) footpad lesions. The DFM was shown to increase ( P < 0.05) Bacillus spp. and decrease ( P < 0.05) C. perfringens in the ileum and cecum at several time points. To investigate microbiome changes in the cecum, digesta samples were analyzed with % guanine and cytosine (%G+C) microbial profiling which fractionates bacterial chromosomes based on the %G+C in DNA. The method revealed treatment profile peaks in low (27.0 to 34.5%), mid (40.5 to 54.0%), and high (59.0 to 68.0%) G+C fractions. 16S rRNA gene amplification and high throughput sequencing was conducted on each of these fractions in order to elucidate specific bacterial population differences. In the low and mid %G+C fractions, DFM had greater abundance of Lactobacillaceae family members ( P = 0.03 and P = 0.01, respectively) and Lactobacillus salivarius ( P = 0.04 and P = 0.01, respectively) than control or Narasin. Lactobacillus johnsonii was also greater in the low %G+C fraction compared to control and Narasin ( P = 0.01). Lachnospiraceae ( P = 0.04) and Ruminococcaceae ( P < 0.01) in the mid %G+C fraction were reduced in the DFM compared to control. Positive alterations to the microbial populations in the gut of broilers may at least be a partial mechanism by which B. subtilis DSM 32315 reduced pathology and improved performance of broilers in the NE challenge.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials.

          Three broiler feeding trials were investigated in order to identify gut bacteria consistently linked with improvements in bird performance as measured by feed efficiency. Trials were done in various geographic locations and varied in diet composition, broiler breed, and bird age. Gut microbial communities were investigated using microbial profiling. Eight common performance-linked operational taxonomic units (OTUs) were identified within both the ilea (180, 492, and 564-566) and ceca (140-142, 218-220, 284-286, 312, and 482) across trials. OTU 564-566 was associated with lower performance, while OTUs 140-142, 482, and 492 were associated with improved performance. Targeted cloning and sequencing of these eight OTUs revealed that they represented 26 bacterial species or phylotypes which clustered phylogenetically into seven groups related to Lactobacillus spp., Ruminococcaceae, Clostridiales, Gammaproteobacteria, Bacteroidales, Clostridiales/Lachnospiraceae, and unclassified bacteria/clostridia. Where bacteria were identifiable to the phylum level, they belonged predominantly to the Firmicutes, with Bacteroidetes and Proteobacteria also identified. Some of the potential performance-related phylotypes showed high sequence identity with classified bacteria (Lactobacillus salivarius, Lactobacillus aviarius, Lactobacillus crispatus, Faecalibacterium prausnitzii, Escherichia coli, Gallibacterium anatis, Clostridium lactatifermentans, Ruminococcus torques, Bacteroides vulgatus, and Alistipes finegoldii). The 16S rRNA gene sequence information generated will allow quantitative assays to be developed which will enable elucidations of which of these phylotypes are truly performance related. This information could be used to monitor strategies to improve feed efficiency and feed formulation for optimal gut health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria

            Identification of bacteria associated with desirable productivity outcomes in animals may offer a direct approach to the identification of probiotic bacteria for use in animal production. We performed three controlled chicken trials (n = 96) to investigate caecal microbiota differences between the best and poorest performing birds using four performance measures; feed conversion ratio (FCR), utilization of energy from the feed measured as apparent metabolisable energy, gain rate (GR), and amount of feed eaten (FE). The shifts in microbiota composition associated with the performance measures were very different between the three trials. Analysis of the caecal microbiota revealed that the high and low FCR birds had significant differences in the abundance of some bacteria as demonstrated by shifts in microbiota alpha and beta diversity. Trials 1 and 2 showed significant overall community shifts, however, the microbial changes driving the difference between good and poor performers were very different. Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae families and genera Ruminococcus, Faecalibacterium and multiple lineages of genus Clostridium (from families Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae) were highly abundant in good FCR birds in Trial 1. Different microbiota was associated with FCR in Trial 2; Catabacteriaceae and unknown Clostridiales family members were increased in good FCR and genera Clostridium (from family Clostridiaceae) and Lactobacillus were associated with poor FCR. Trial 3 had only mild microbiota differences associated with all four performance measures. Overall, the genus Lactobacillus was correlated with feed intake which resulted in poor FCR performance. The genus Faecalibacterium correlated with improved FCR, increased GR and reduced FE. There was overlap in phylotypes correlated with improved FCR and GR, while different microbial cohorts appeared to be correlated with FE. Even under controlled conditions different cohorts of birds developed distinctly different microbiotas. Within the different trial groups the abundance of certain bacterial groups correlated with productivity outcomes. However, with different underlying microbiotas there were different bacteria correlated with performance. The challenge will be to identify probiotic bacteria that can reliably deliver favorable outcomes from diverse microbiotas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets.

              Body weight, feed consumption, and mortality were measured in the 1957 Athens-Canadian Randombred Control (ACRBC) strain and in the 2001 Ross 308 strain of broilers when fed representative 1957 and 2001 diets. The dietary regimens were chosen to be representative of those used in the industry in 1957 vs. 2001. The 1957 diets were fed as mash, the 2001 starter was as crumbles, and the grower and finisher diets were pellets. Feed consumption and BW were recorded at 21, 42, 56, 70, and 84 d of age to cover the two broiler strains normal span of marketing ages. Mortality was low, and the mortality of the ACRBC was approximately half that of the modem strain. Average BW for the ACRBC on the 1957 diets were 176, 539,809, 1,117, and 1,430 g vs. 743, 2,672, 3,946, 4,808, and 5,520 g for the Ross 308 on the 2001 diets at 21, 42, 56, 70, and 84 d of age, respectively. The 42-d feed conversion (FC) on the 2001 and 1957 feeds for the Ross 308 were 1.62 and 1.92 with average BW of 2,672 and 2,126 g and for the ACRBC were 2.14 and 2.34 with average BW of 578 and 539 g, respectively. The Ross 308 broiler on the 2001 feed was estimated to have reached 1,815 g BW at 32 d of age with a FC of 1.47, whereas the ACRBC on the 1957 feed would not have reached that BW until 101 d of age with a FC of 4.42.
                Bookmark

                Author and article information

                Journal
                Poult Sci
                Poult. Sci
                ps
                Poultry Science
                Poultry Science Association, Inc.
                0032-5791
                1525-3171
                September 2019
                18 November 2018
                18 November 2018
                : 98
                : 9
                : 3450-3463
                Affiliations
                [1 ]Evonik Nutrition & Care GmbH, Hanau, 63067, Hessen, Germany
                [2 ]Alimetrics Ltd, Espoo, 02920, Finland
                Author notes
                Corresponding author: rose.whelan@ 123456evonik.com
                Article
                pey500
                10.3382/ps/pey500
                6698186
                30452717
                cd645e8b-9f5f-4652-b626-36501e9e6b54
                © The Author 2018. Published by Oxford University Press on behalf of Poultry Science Association.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com .

                History
                : 27 June 2018
                : 24 October 2018
                Page count
                Pages: 14
                Categories
                Immunology, Health and Disease

                broiler,necrotic enteritis,bacillus subtilis,probiotic,microbiome

                Comments

                Comment on this article