+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Opposing ISWI- and CHD-class chromatin remodeling activities orchestrate heterochromatic DNA repair

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Chromatin compaction mediated by CHD3.1 must be counteracted by ACF1–SNF2H and RNF20 in order to allow DNA double-strand break repair in heterochromatin of postreplicative cells.


          Heterochromatin is a barrier to DNA repair that correlates strongly with elevated somatic mutation in cancer. CHD class II nucleosome remodeling activity (specifically CHD3.1) retained by KAP-1 increases heterochromatin compaction and impedes DNA double-strand break (DSB) repair requiring Artemis. This obstruction is alleviated by chromatin relaxation via ATM-dependent KAP-1S824 phosphorylation (pKAP-1) and CHD3.1 dispersal from heterochromatic DSBs; however, how heterochromatin compaction is actually adjusted after CHD3.1 dispersal is unknown. In this paper, we demonstrate that Artemis-dependent DSB repair in heterochromatin requires ISWI (imitation switch)-class ACF1–SNF2H nucleosome remodeling. Compacted chromatin generated by CHD3.1 after DNA replication necessitates ACF1–SNF2H–mediated relaxation for DSB repair. ACF1–SNF2H requires RNF20 to bind heterochromatic DSBs, underlies RNF20-mediated chromatin relaxation, and functions downstream of pKAP-1–mediated CHD3.1 dispersal to enable DSB repair. CHD3.1 and ACF1–SNF2H display counteractive activities but similar histone affinities (via the plant homeodomains of CHD3.1 and ACF1), which we suggest necessitates a two-step dispersal and recruitment system regulating these opposing chromatin remodeling activities during DSB repair.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: found
          • Article: not found

          How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers.

          Histones comprise the major protein component of chromatin, the scaffold in which the eukaryotic genome is packaged, and are subject to many types of post-translational modifications (PTMs), especially on their flexible tails. These modifications may constitute a 'histone code' and could be used to manage epigenetic information that helps extend the genetic message beyond DNA sequences. This proposed code, read in part by histone PTM-binding 'effector' modules and their associated complexes, is predicted to define unique functional states of chromatin and/or regulate various chromatin-templated processes. A wealth of structural and functional data show how chromatin effector modules target their cognate covalent histone modifications. Here we summarize key features in molecular recognition of histone PTMs by a diverse family of 'reader pockets', highlighting specific readout mechanisms for individual marks, common themes and insights into the downstream functional consequences of the interactions. Changes in these interactions may have far-reaching implications for human biology and disease, notably cancer.
            • Record: found
            • Abstract: found
            • Article: not found

            Chromatin organization is a major influence on regional mutation rates in human cancer cells.

            Cancer genome sequencing provides the first direct information on how mutation rates vary across the human genome in somatic cells. Testing diverse genetic and epigenetic features, here we show that mutation rates in cancer genomes are strikingly related to chromatin organization. Indeed, at the megabase scale, a single feature—levels of the heterochromatin-associated histone modification H3K9me3—can account for more than 40% of mutation-rate variation, and a combination of features can account for more than 55%. The strong association between mutation rates and chromatin organization is upheld in samples from different tissues and for different mutation types. This suggests that the arrangement of the genome into heterochromatin- and euchromatin-like domains is a dominant influence on regional mutation-rate variation in human somatic cells.
              • Record: found
              • Abstract: found
              • Article: not found

              A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci.

              The hereditary disorder ataxia telangiectasia (A-T) is associated with striking cellular radiosensitivity that cannot be attributed to the characterized cell cycle checkpoint defects. By epistasis analysis, we show that ataxia telangiectasia mutated protein (ATM) and Artemis, the protein defective in patients with RS-SCID, function in a common double-strand break (DSB) repair pathway that also requires H2AX, 53BP1, Nbs1, Mre11, and DNA-PK. We show that radiation-induced Artemis hyperphosphorylation is ATM dependent. The DSB repair process requires Artemis nuclease activity and rejoins approximately 10% of radiation-induced DSBs. Our findings are consistent with a model in which ATM is required for Artemis-dependent processing of double-stranded ends with damaged termini. We demonstrate that Artemis is a downstream component of the ATM signaling pathway required uniquely for the DSB repair function but dispensable for ATM-dependent cell cycle checkpoint arrest. The significant radiosensitivity of Artemis-deficient cells demonstrates the importance of this component of DSB repair to survival.

                Author and article information

                J Cell Biol
                J. Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                22 December 2014
                : 207
                : 6
                : 717-733
                [1 ]Robson DNA Science Centre, Southern Alberta Cancer Research Institute ; and [2 ]Department of Biochemistry and Molecular Biology and [3 ]Department of Oncology, Cumming School of Medicine; University of Calgary, Calgary, Alberta T2N 4N1, Canada
                [4 ]Department of Human Genetics, Leiden University Medical Centre, 2333 ZC Leiden, Netherlands
                [5 ]Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
                Author notes
                Correspondence to Aaron A. Goodarzi: A.Goodarzi@

                K. Klement and M.S. Luijsterburg contributed equally to this paper.

                © 2014 Klement et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at

                Research Articles

                Cell biology


                Comment on this article