74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      System-Driven and Oscillator-Dependent Circadian Transcription in Mice with a Conditionally Active Liver Clock

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mammalian circadian timing system consists of a master pacemaker in neurons of the suprachiasmatic nucleus (SCN) and clocks of a similar molecular makeup in most peripheral body cells. Peripheral oscillators are self-sustained and cell autonomous, but they have to be synchronized by the SCN to ensure phase coherence within the organism. In principle, the rhythmic expression of genes in peripheral organs could thus be driven not only by local oscillators, but also by circadian systemic signals. To discriminate between these mechanisms, we engineered a mouse strain with a conditionally active liver clock, in which REV-ERBα represses the transcription of the essential core clock gene Bmal1 in a doxycycline-dependent manner. We examined circadian liver gene expression genome-wide in mice in which hepatocyte oscillators were either running or arrested, and found that the rhythmic transcription of most genes depended on functional hepatocyte clocks. However, we discovered 31 genes, including the core clock gene mPer2, whose expression oscillated robustly irrespective of whether the liver clock was running or not. By contrast, in liver explants cultured in vitro, circadian cycles of mPer2::luciferase bioluminescence could only be observed when hepatocyte oscillators were operational. Hence, the circadian cycles observed in the liver of intact animals without functional hepatocyte oscillators were likely generated by systemic signals. The finding that rhythmic mPer2 expression can be driven by both systemic cues and local oscillators suggests a plausible mechanism for the phase entrainment of subsidiary clocks in peripheral organs.

          Author Summary

          In contrast to previously held belief, molecular circadian oscillators are not restricted to specialized pacemaker tissues, such as the brain's suprachiasmatic nucleus (SCN), but exist in virtually all body cells. Although the circadian clocks operative in peripheral cell types are as robust as those residing in SCN neurons, they quickly become desynchronized in vitro due to variations in period length. Hence, in intact animals, the phase coherence between peripheral oscillators must be established by daily signals generated by the SCN master clock. Although the hierarchy between master and slave oscillators is now well established, the respective roles of these clocks in governing the circadian transcription program in a given organ have never been examined. In principle, the circadian expression of genes in a peripheral tissue could be driven either by cyclic systemic cues, by peripheral oscillators, or by both. In order to discriminate between genes regulated by local oscillators and systemic cues in liver, we generated mice in which hepatocyte clocks can be turned on and off at will. These studies suggest that 90% of the circadian transcription program in the liver is abolished or strongly attenuated when hepatocyte clocks are turned off, indicating that the expression of most circadian liver genes is orchestrated by local cellular clocks. The remaining 10% of cyclically expressed liver genes continue to be transcribed in a robustly circadian fashion in the absence of functional hepatocyte oscillators. These genes, which unexpectedly include the bona fide clock gene mPer2, must therefore be regulated by oscillating systemic signals, such as hormones, metabolites, or body temperature. Although temperature rhythms display only modest amplitudes, they appear to play a significant role in the phase entrainment of mPer2 transcription.

          Abstract

          Research on mice engineered with an inducible liver clock enabled identification of some genes with expression controlled by the local clock, and other genes (including mPer2) that maintained circadian oscillations thanks to cues from the SCN.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Coordinated transcription of key pathways in the mouse by the circadian clock.

          In mammals, circadian control of physiology and behavior is driven by a master pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. We have used gene expression profiling to identify cycling transcripts in the SCN and in the liver. Our analysis revealed approximately 650 cycling transcripts and showed that the majority of these were specific to either the SCN or the liver. Genetic and genomic analysis suggests that a relatively small number of output genes are directly regulated by core oscillator components. Major processes regulated by the SCN and liver were found to be under circadian regulation. Importantly, rate-limiting steps in these various pathways were key sites of circadian control, highlighting the fundamental role that circadian clocks play in cellular and organismal physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator.

            Mammalian circadian rhythms are generated by a feedback loop in which BMAL1 and CLOCK, players of the positive limb, activate transcription of the cryptochrome and period genes, components of the negative limb. Bmal1 and Per transcription cycles display nearly opposite phases and are thus governed by different mechanisms. Here, we identify the orphan nuclear receptor REV-ERBalpha as the major regulator of cyclic Bmal1 transcription. Circadian Rev-erbalpha expression is controlled by components of the general feedback loop. Thus, REV-ERBalpha constitutes a molecular link through which components of the negative limb drive antiphasic expression of components of the positive limb. While REV-ERBalpha influences the period length and affects the phase-shifting properties of the clock, it is not required for circadian rhythm generation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resetting of circadian time in peripheral tissues by glucocorticoid signaling.

              In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene expression in liver, kidney, and heart. However, dexamethasone does not affect cyclic gene expression in neurons of the suprachiasmatic nucleus. This enabled us to establish an apparent phase-shift response curve specifically for peripheral clocks in intact animals. In contrast to the central clock, circadian oscillators in peripheral tissues appear to remain responsive to phase resetting throughout the day.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                February 2007
                30 January 2007
                : 5
                : 2
                : e34
                Affiliations
                [1 ] Department of Molecular Biology, University of Geneva, Geneva, Switzerland
                [2 ] Department of Biochemistry, University of Geneva, Geneva, Switzerland
                [3 ] Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
                [4 ] Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
                University of Cambridge, United Kingdom
                Author notes
                * To whom correspondence should be addressed. E-mail: ueli.schibler@ 123456molbio.unige.ch
                Article
                06-PLBI-RA-1419R2 plbi-05-02-14
                10.1371/journal.pbio.0050034
                1783671
                17298173
                cd68f057-2057-4951-9950-c292c0bd9990
                Copyright: © 2007 Kornmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 August 2006
                : 1 December 2006
                Page count
                Pages: 11
                Categories
                Research Article
                Biochemistry
                Cell Biology
                Computational Biology
                Computational Biology
                Genetics and Genomics
                Molecular Biology
                Neuroscience
                Physiology
                Mus (Mouse)
                Mammals
                Custom metadata
                Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5(2): e34. doi: 10.1371/journal.pbio.0050034

                Life sciences
                Life sciences

                Comments

                Comment on this article