20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reverse transcriptases: intron-encoded proteins found in thermophilic bacteria.

      Genes
      Amino Acid Sequence, Bacillus, enzymology, Bacterial Proteins, chemistry, isolation & purification, metabolism, Baculoviridae, Cloning, Molecular, Escherichia coli, Introns, genetics, Molecular Sequence Data, RNA-Directed DNA Polymerase

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A number of thermophilic bacteria have been surveyed for possessing reverse transcriptase genes using a degenerate primer approach derived from an alignment of known group II intron encoded reverse transcriptases (RT) from mesophilic prokaryotes and eukaryotes. Six out of 34 thermophilic isolates gave a PCR product that was indicative of an RT internal fragment on sequencing. A putative RT from Bacillus caldolyticus strain EA1 was isolated by genomic walking and cloned into an Escherichia coli expression vector. The recombinant protein proved to be insoluble and was unable to be recovered from the insoluble fraction of lysates of E. coli. The RT was successfully expressed in a baculovirus vector although yields remained low. We followed RT activity during purification using the poly(rC)*p(dG)(12-18), which specifically detects only RNA-dependent DNA polymerase activity. We could not detect incorporation of dTTP into poly(rC) )*p(dG)(12-18) when using uninfected Sf21 lysates and conclude that the substrate is not a template for DNA-dependent DNA polymerase. Although a high level of RT activity was detected in the total cell protein, when compared to the activity detected in the soluble fraction, only about 10% of the activity was soluble. Sequence comparisons showed significant differences between the EA1-IEP and a Geobacillus RT expressed by others. We conclude that it may be necessary to isolate the IEP RT as a ribonucleoprotein to obtain sufficient material for further analysis.

          Related collections

          Author and article information

          Comments

          Comment on this article