20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Placental serotonin: implications for the developmental effects of SSRIs and maternal depression

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In addition to its role in the pathophysiology of numerous psychiatric disorders, increasing evidence points to serotonin (5-HT) as a crucial molecule for the modulation of neurodevelopmental processes. Recent evidence indicates that the placenta is involved in the synthesis of 5-HT from maternally derived tryptophan (TRP). This gives rise to the possibility that genetic and environmental perturbations directly affecting placental TRP metabolism may lead to abnormal brain circuit wiring in the developing embryo, and therefore contribute to the developmental origin of psychiatric disorders. In this review, we discuss how perturbations of the placental TRP metabolic pathway may lead to abnormal brain development and function throughout life. Of particular interest is prenatal exposure to maternal depression and antidepressants, both known to alter fetal development. We review existing evidence on how antidepressants can alter placental physiology in its key function of maintaining fetal homeostasis and have long-term effects on fetal forebrain development.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          The developmental role of serotonin: news from mouse molecular genetics.

          New genetic models that target the serotonin system show that transient alterations in serotonin homeostasis cause permanent changes to adult behaviour and modify the fine wiring of brain connections. These findings have revived a long-standing interest in the developmental role of serotonin. Molecular genetic approaches are now showing us that different serotonin receptors, acting at different developmental stages, modulate different developmental processes such as neurogenesis, apoptosis, axon branching and dendritogenesis. Our understanding of the specification of the serotonergic phenotype is improving. In addition, studies have revealed that serotonergic traits are dissociable, as there are populations of neurons that contain serotonin but do not synthesize it.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice.

            Reduced serotonin transporter (5-HTT) expression is associated with abnormal affective and anxiety-like symptoms in humans and rodents, but the mechanism of this effect is unknown. Transient inhibition of 5-HTT during early development with fluoxetine, a commonly used serotonin selective reuptake inhibitor, produced abnormal emotional behaviors in adult mice. This effect mimicked the behavioral phenotype of mice genetically deficient in 5-HTT expression. These findings indicate a critical role of serotonin in the maturation of brain systems that modulate emotional function in the adult and suggest a developmental mechanism to explain how low-expressing 5-HTT promoter alleles increase vulnerability to psychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure.

              Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
                Bookmark

                Author and article information

                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                23 April 2013
                2013
                : 7
                : 47
                Affiliations
                Department of Cell and Neurobiology, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California Los Angeles, CA, USA
                Author notes

                Edited by: Dirk Schubert, University Medical Centre Nijmegen, Netherlands

                Reviewed by: Corette J. Wierenga, Utrecht University, Netherlands; Javier Gonzalez-Maeso, Icahn School of Medicine at Mount Sinai, USA

                *Correspondence: Alexandre Bonnin, Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI 429, Los Angeles, CA 90033, USA. e-mail: bonnin@ 123456med.usc.edu

                †These authors have contributed equally to this work.

                Article
                10.3389/fncel.2013.00047
                3632750
                23630464
                cd8101d7-bbaa-44b8-b58c-9752232575c0
                Copyright © 2013 Velasquez, Goeden and Bonnin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 27 February 2013
                : 03 April 2013
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 85, Pages: 7, Words: 6051
                Categories
                Neuroscience
                Review Article

                Neurosciences
                placenta,serotonin,ssri,tryptophan,depression,fetal programming,fetal brain,serotonin transporter

                Comments

                Comment on this article