Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DOA Estimation of Low Altitude Target Based on Adaptive Step Glowworm Swarm Optimization-multiple Signal Classification Algorithm

      Read this article at

      ScienceOpenPublisherDOAJ
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The traditional MUltiple SIgnal Classification (MUSIC) algorithm requires significant computational effort and can not be employed for the Direction Of Arrival (DOA) estimation of targets in a low-altitude multipath environment. As such, a novel MUSIC approach is proposed on the basis of the algorithm of Adaptive Step Glowworm Swarm Optimization (ASGSO). The virtual spatial smoothing of the matrix formed by each snapshot is used to realize the decorrelation of the multipath signal and the establishment of a fullorder correlation matrix. ASGSO optimizes the function and estimates the elevation of the target. The simulation results suggest that the proposed method can overcome the low altitude multipath effect and estimate the DOA of target readily and precisely without radar effective aperture loss.

          Related collections

          Author and article information

          Journal
          Journal of Radars
          Chinese Academy of Sciences
          01 June 2015
          : 4
          : 3
          : 309-316
          Affiliations
          [1 ] Air and Missile Defense College, Air Force Engineering University
          Article
          0f252b5f2672466cab8a7e9f5a5bf15f
          10.12000/JR14142

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Categories
          Technology (General)
          T1-995

          Comments

          Comment on this article