12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The thoracolumbar fascia: anatomy, function and clinical considerations : The thoracolumbar fascia

      , , , ,

      Journal of Anatomy

      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this overview, new and existent material on the organization and composition of the thoracolumbar fascia (TLF) will be evaluated in respect to its anatomy, innervation biomechanics and clinical relevance. The integration of the passive connective tissues of the TLF and active muscular structures surrounding this structure are discussed, and the relevance of their mutual interactions in relation to low back and pelvic pain reviewed. The TLF is a girdling structure consisting of several aponeurotic and fascial layers that separates the paraspinal muscles from the muscles of the posterior abdominal wall. The superficial lamina of the posterior layer of the TLF (PLF) is dominated by the aponeuroses of the latissimus dorsi and the serratus posterior inferior. The deeper lamina of the PLF forms an encapsulating retinacular sheath around the paraspinal muscles. The middle layer of the TLF (MLF) appears to derive from an intermuscular septum that developmentally separates the epaxial from the hypaxial musculature. This septum forms during the fifth and sixth weeks of gestation. The paraspinal retinacular sheath (PRS) is in a key position to act as a 'hydraulic amplifier', assisting the paraspinal muscles in supporting the lumbosacral spine. This sheath forms a lumbar interfascial triangle (LIFT) with the MLF and PLF. Along the lateral border of the PRS, a raphe forms where the sheath meets the aponeurosis of the transversus abdominis. This lateral raphe is a thickened complex of dense connective tissue marked by the presence of the LIFT, and represents the junction of the hypaxial myofascial compartment (the abdominal muscles) with the paraspinal sheath of the epaxial muscles. The lateral raphe is in a position to distribute tension from the surrounding hypaxial and extremity muscles into the layers of the TLF. At the base of the lumbar spine all of the layers of the TLF fuse together into a thick composite that attaches firmly to the posterior superior iliac spine and the sacrotuberous ligament. This thoracolumbar composite (TLC) is in a position to assist in maintaining the integrity of the lower lumbar spine and the sacroiliac joint. The three-dimensional structure of the TLF and its caudally positioned composite will be analyzed in light of recent studies concerning the cellular organization of fascia, as well as its innervation. Finally, the concept of a TLC will be used to reassess biomechanical models of lumbopelvic stability, static posture and movement.

          Related collections

          Most cited references 140

          • Record: found
          • Abstract: found
          • Article: not found

          Myofibroblasts and mechano-regulation of connective tissue remodelling.

          During the past 20 years, it has become generally accepted that the modulation of fibroblastic cells towards the myofibroblastic phenotype, with acquisition of specialized contractile features, is essential for connective-tissue remodelling during normal and pathological wound healing. Yet the myofibroblast still remains one of the most enigmatic of cells, not least owing to its transient appearance in association with connective-tissue injury and to the difficulties in establishing its role in the production of tissue contracture. It is clear that our understanding of the myofibroblast its origins, functions and molecular regulation will have a profound influence on the future effectiveness not only of tissue engineering but also of regenerative medicine generally.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Is there a role for transversus abdominis in lumbo-pelvic stability?

             P Hodges (1999)
            There has been considerable interest in the literature regarding the function of transversus abdominis, the deepest of the abdominal muscles, and the clinical approach to training this muscle. With the development of techniques for the investigation of this muscle involving the insertion of fine-wire electromyographic electrodes under the guidance of ultrasound imaging it has been possible to test the hypotheses related to its normal function and function in people with low back pain. The purpose of this review is to provide an appraisal of the current evidence for the role of transversus abdominis in spinal stability, to develop a model of how the contribution of this muscle differs from the other abdominal muscles and to interpret these findings in terms of the consequences of changes in this function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture.

              This study examined the coactivation of trunk flexor and extensor muscles in healthy individuals. The experimental electromyographic data and the theoretical calculations were analyzed in the context of mechanical stability of the lumbar spine. To test a set of hypotheses pertaining to healthy individuals: 1) that the trunk flexor-extensor muscle coactivation is present around a neutral spine posture, 2) that the coactivation is increased when the subject carries a load; and 3) that the coactivation provides the needed mechanical stability to the lumbar spine. Theoretically, antagonistic trunk muscle coactivation is necessary to provide mechanical stability to the human lumbar spine around its neutral posture. No experimental evidence exists, however, to support this hypothesis. Ten individuals executed slow trunk flexion-extension tasks, while six muscles on the right side were monitored with surface electromyography: external oblique, internal oblique, rectus abdominis, multifidus, lumbar erector spinae, and thoracic erector spinae. Simple, but realistic, calculations of spine stability also were performed and compared with experimental results. Average antagonistic flexor-extensor muscle coactivation levels around the neutral spine posture as detected with electromyography were 1.7 +/- 0.8% of maximum voluntary contraction for no external load trials and 2.9 +/- 1.4% of maximum voluntary contraction for the trials with added 32-kg mass to the torso. The inverted pendulum model based on static moment equilibrium criteria predicted no antagonistic coactivation. The same model based on the mechanical stability criteria predicted 1.0% of maximum voluntary contraction coactivation of flexors and extensors with zero load and 3.1% of maximum voluntary contraction with a 32-kg mass. The stability model also was run with zero passive spine stiffness to simulate an injury. Under such conditions, the model predicted 3.4% and 5.5% of maximum voluntary contraction of antagonistic muscle coactivation for no extra load and the added 32 kg, respectively. This study demonstrated that antagonistic trunk flexor-extensor muscle coactivation was present around the neutral spine posture in healthy individuals. This coactivation increased with added mass to the torso. Using a biomechanical model, the coactivation was explained entirely on the basis of the need for the neuromuscular system to provide the mechanical stability to the lumbar spine.
                Bookmark

                Author and article information

                Journal
                Journal of Anatomy
                J. Anat.
                Wiley
                00218782
                December 2012
                December 2012
                May 27 2012
                : 221
                : 6
                : 507-536
                Article
                10.1111/j.1469-7580.2012.01511.x
                22630613
                © 2012

                Comments

                Comment on this article