39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial–Nuclear Interactions: Compensatory Evolution or Variable Functional Constraint among Vertebrate Oxidative Phosphorylation Genes?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative phosphorylation (OXPHOS), the major energy-producing pathway in aerobic organisms, includes protein subunits encoded by both mitochondrial (mt) and nuclear (nu) genomes. How these independent genomes have coevolved is a long-standing question in evolutionary biology. Although mt genes evolve faster than most nu genes, maintenance of OXPHOS structural stability and functional efficiency may involve correlated evolution of mt and nu OXPHOS genes. The nu OXPHOS genes might be predicted to exhibit accelerated evolutionary rates to accommodate the elevated substitution rates of mt OXPHOS subunits with which they interact. Evolutionary rates of nu OXPHOS genes should, therefore, be higher than that of nu genes that are not involved in OXPHOS (nu non-OXPHOS). We tested the compensatory evolution hypothesis by comparing the evolutionary rates (synonymous substitution rate d S and nonsynonymous substitution rate d N ) among 13 mt OXPHOS genes, 60 nu OXPHOS genes, and 77 nu non-OXPHOS genes in vertebrates (7 fish and 40 mammal species). The results from a combined analysis of all OXPHOS subunits fit the predictions of the hypothesis. However, results from two OXPHOS complexes did not fit this pattern when analyzed separately. We found that the d N of nu OXPHOS genes for “core” subunits (those involved in the major catalytic activity) was lower than that of “noncore” subunits, whereas there was no significant difference in d N between genes for nu non-OXPHOS and core subunits. This latter finding suggests that compensatory changes play a minor role in the evolution of OXPHOS genes and that the observed accelerated nu substitution rates are due largely to reduced functional constraint on noncore subunits.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          R: a language and environment for statistic computing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.

            With a standard set of primers directed toward conserved regions, we have used the polymerase chain reaction to amplify homologous segments of mtDNA from more than 100 animal species, including mammals, birds, amphibians, fishes, and some invertebrates. Amplification and direct sequencing were possible using unpurified mtDNA from nanogram samples of fresh specimens and microgram amounts of tissues preserved for months in alcohol or decades in the dry state. The bird and fish sequences evolve with the same strong bias toward transitions that holds for mammals. However, because the light strand of birds is deficient in thymine, thymine to cytosine transitions are less common than in other taxa. Amino acid replacement in a segment of the cytochrome b gene is faster in mammals and birds than in fishes and the pattern of replacements fits the structural hypothesis for cytochrome b. The unexpectedly wide taxonomic utility of these primers offers opportunities for phylogenetic and population research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial evolution.

              The serial endosymbiosis theory is a favored model for explaining the origin of mitochondria, a defining event in the evolution of eukaryotic cells. As usually described, this theory posits that mitochondria are the direct descendants of a bacterial endosymbiont that became established at an early stage in a nucleus-containing (but amitochondriate) host cell. Gene sequence data strongly support a monophyletic origin of the mitochondrion from a eubacterial ancestor shared with a subgroup of the alpha-Proteobacteria. However, recent studies of unicellular eukaryotes (protists), some of them little known, have provided insights that challenge the traditional serial endosymbiosis-based view of how the eukaryotic cell and its mitochondrion came to be. These data indicate that the mitochondrion arose in a common ancestor of all extant eukaryotes and raise the possibility that this organelle originated at essentially the same time as the nuclear component of the eukaryotic cell rather than in a separate, subsequent event.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                2013
                30 August 2013
                October 2013
                30 August 2013
                : 5
                : 10
                : 1781-1791
                Affiliations
                Oklahoma Biological Survey and Department of Biology, University of Oklahoma
                Author notes
                * Corresponding author: E-mail: rbroughton@ 123456ou.edu .

                Associate editor: B. Venkatesh

                Data deposition: The links to each gene of all species are in supplementary table S1, Supplementary Material online. Alignment sequences are available by the corresponding author upon request.

                Article
                evt129
                10.1093/gbe/evt129
                3814189
                23995460
                cda93e1b-8566-42bb-a6b1-272a64c6958f
                © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 22 August 2013
                Page count
                Pages: 11
                Categories
                Research Article

                Genetics
                oxidative phosphorylation,evolutionary rates,cytonuclear coevolution,nonsynonymous substitution,dn,synonymous substitution,ds

                Comments

                Comment on this article