182
views
0
recommends
+1 Recommend
4 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Environmental Engineers and Scientists Have Important Roles to Play in Stemming Outbreaks and Pandemics Caused by Enveloped Viruses

      news

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Environmental engineers and scientists have played pivotal roles in protecting the public from viral illnesses, and continue to do so today. We develop drinking water and municipal wastewater treatment technologies, make discoveries that inform related regulations and policies, and conduct critical research on the presence, persistence, and transport of viruses in the environment. A wide range of impactful research in our field has focused mainly on nonenveloped human enteric viruses such as human noroviruses and enteroviruses. More recently, a number of high-profile outbreaks such as Ebola virus, measles, Zika virus, avian influenzas, SARS, MERS, and the ongoing COVID-19 pandemic have been caused by enveloped viruses. In addition to the RNA or DNA genomes and protective protein capsids that are common to all viruses, enveloped virus structures are also wrapped in bilipid membranes. The primary mode of transmission for many enveloped viruses is by close contact with infected individuals. Some enveloped viruses, however, are released to the environment by the host and persist on surfaces (i.e., fomites), in the air, or in water, long enough to come into contact with another host for further onward transmission (i.e., indirect transmission). This includes viruses responsible for influenza and measles. The primary transmission routes for SARS-CoV-2 (the virus that causes COVID-19) are believed to be person-to-person contact and by exposure to large droplets produced from sneezing, coughing or talking, but indirect transmission routes may also play a role. 1 This potential role of the environment in the spread of COVID-19 highlights the multitude of applied research needs that must be addressed to effectively control outbreaks and pandemics as novel enveloped viruses emerge. Environmental engineers and scientists are well positioned to apply their unique skill sets and experience with interdisciplinary research to address these needs. Virus particles in the air and on fomites are exposed to a range of environmental conditions that influence their persistence. Relative humidity, fomite material, and air temperature can greatly impact enveloped virus inactivation rates. 2−5 Even the medium in which the virus is suspended can greatly impact persistence. 6 For example, chlorine-based solutions and hydrogen peroxide gas are effective at inactivating the enveloped virus surrogate Phi6 on fomites, 7,8 but the presence of blood requires much higher hydrogen peroxide gas doses. 8 Future mechanistic studies should probe how specific constituents in the matrix, temperature, humidity, and solar radiation each impact inactivation. Furthermore, research quantifying the transfer of enveloped viruses between fomites and skin, and determining effective hand washing and surface sanitizing methods, is needed to inform agent-based risk assessment models. Viruses have a direct connection to wastewater and drinking water purification when they are excreted in feces or urine (Table 1 ), 9 but there is limited data on the concentration of enveloped viruses in feces and urine. The human coronavirus responsible for the 2003 SARS outbreak was able to replicate in the human GI tract and infective particles were detected in stool samples. 10 In fact, aerosolized fecal particles are believed to have played a major role in spreading the virus at a Hong Kong apartment complex. 11 Similarly, SARS-CoV-2 genomic RNA has been detected in feces. 12,13 Although infective SARS-CoV-2 has not yet been confirmed in stool samples, the SARS-CoV-2 RNA shedding pattern suggests viruses are replicating in the GI tract. 13 Other human enveloped viruses, such as cytomegalovirus (CMV), are excreted in urine. Research so far on enveloped viruses in wastewater, including coronaviruses, suggest these viruses are inactivated at faster rates than most nonenveloped viruses, 14−18 that they partition to wastewater solids to a greater extent than nonenveloped viruses, 15 and that wastewater temperature is positively associated with their inactivation rates. 15,18 In water purification processes, they are generally more susceptible to oxidant disinfectants than nonenveloped viruses. 19,20 The presence of an envelope does not appear to impact virus susceptibility to ultraviolet C (UVC) light, 15 likely because UVC targets virus genomes and lipid membranes do not shield the genomes from UVC radiation. Table 1 Mean or Median Viral Loads in the Feces and Urine of Infected Individuals for Three Enveloped Viruses and Two Nonenveloped Virusesa virus enveloped? urine (gc/mL) feces (gc/g) feces (gc/swab) source SARSb yes 101.3 106.1 NA (21) cytomegalovirus (CMV)c yes 104.5 NA NA (22) SARS-CoV-2d yes ND NA 105 (13) human norovirus GIIe no NA 108.5 NA (23) JC polyomavirusf no 104.6 NA NA (24) a “gc” is gene copy. NA = not analyzed in study, ND = analyzed, but not detected in study. b Samples from approximately 100 patients with lab-confirmed illness, mean. c Samples from 36 children with lab-confirmed illness, median. d Rectal swab samples from 9 patients with lab-confirmed illness during first week of illness, mean. e Samples from 627 patients with gastroenteritis symptoms, median f Samples from 71 health blood donors that tested positive or JC polyomavirus, median. What does this mean for the SARS-CoV-2 virus and the ability of our water purification plants to produce safe water? Our drinking water treatment plants, including those used to produce drinking water from wastewater, were designed using microbial risk assessments and process performance data with nonenveloped enteric viruses. Based on the facts that (1) the closely related 2003 SARS was excreted in feces at lower levels than enteric human noroviruses (Table 1 ), (2) model coronaviruses are inactivated at faster rates in wastewater and other waters than nonenveloped viruses, (3) the enveloped viruses studied to-date are more susceptible to oxidant disinfectants than nonenveloped viruses, and (4) the large single-stranded RNA (ssRNA) genome (∼29.8 kb) of SARS-CoV-2 likely renders it more susceptible to UVC inactivation than enteric ssRNA viruses, the multibarrier wastewater and drinking water treatment systems are likely effective in protecting against SARS-CoV-2. Nonetheless, there may still be water-related exposures that need to be considered if infectious SARS-CoV-2 viruses are present in urine or feces. Such exposures may occur in communities that experience combined sewage overflows, that do not have sewage infrastructure, or that use wastewater for irrigation, as well as buildings that have faulty plumbing systems and occupational exposures to wastewater and excrement. Despite the research outlined above, enveloped viruses are extremely diverse, with a range of genome types, structures, replication cycles, and pathogenicities. For example, of the 158 identified human RNA viruses species as of 2018, 122 species from 11 virus families were enveloped and 36 species from 6 families were nonenveloped. 25 Consequently, enveloped viruses likely display a diverse range of environmental behavior, persistence, and fate. 26 The limited studies on enveloped-virus fate, transport, and inactivation have focused on only a small fraction of human viruses or their proxies including animal coronaviruses and bacteriophage phi6. Although studies using animal coronaviruses have been valuable for the current COVID-19 outbreak, 3,15,27 it is essential to consider an expanded set of enveloped viruses that better represent human enveloped virus diversity. Future studies on enveloped viruses should seek to carefully characterize and even standardize the conditions under which measurements are conducted. Media composition, the purity of virus stock, and when possible, virus concentrations in both gene copies and infective units, should be described. When studying oxidants, the demand of the solution and change in oxidant concentration through the experiment should be provided. When studying radiation (UVC and/or sunlight), attenuation through the experimental solution should be well-characterized incorporated into reported doses. Researchers should include a well-studied surrogate virus in their experiments in addition to the enveloped virus of interest to facilitate cross-study comparisons. We recommend using the nonenveloped bacteriophage MS2 for this purpose, as it is one of the most studied viruses in environmental systems. Finally, there are emerging research areas in our field that we believe can inform the current COVID-19 outbreak and future novel viral outbreaks. For example, predictive models based on the underlying mechanisms controlling the persistence of enveloped viruses, and other characteristics, may reduce the need to study every virus under every condition. 14 Another promising area of research involves using sewage to monitor virus circulation in communities and detect outbreaks before clinical cases are identified. Recently applied to pathogenic bacteria 28 and nonenveloped viruses, 29 this will necessitate a better understanding of which enveloped viruses are excreted in urine and feces and at what levels. SARS-CoV-2 will certainly not be the last novel virus to emerge and seriously threaten global public health. Researchers and funding agencies have a tendency to focus intensely on a specific virus during its outbreak, but then move on to other topics when the outbreak subsides. Given the historical contributions from our field, and the grand challenges that lie ahead, 30 environmental science and engineering researchers should take a broader, long-term, and more quantitative approach to understanding viruses that are spread through the environment. Similar to how we approach chemical pollutants in the environment, we should aim to understand and communicate to our colleagues in medicine and public health the specific characteristics that drive transport and inactivation of enveloped viruses in solutions, on surfaces, and in the air. Likewise, we should seek to understand how environmental factors shape possible virus transmission routes. That way, regardless of the identity of the enveloped virus that causes the next major outbreak, we can provide more informed descriptions of its persistence and recommendations on how to mitigate its spread.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          First Case of 2019 Novel Coronavirus in the United States

          Summary An outbreak of novel coronavirus (2019-nCoV) that began in Wuhan, China, has spread rapidly, with cases now confirmed in multiple countries. We report the first case of 2019-nCoV infection confirmed in the United States and describe the identification, diagnosis, clinical course, and management of the case, including the patient’s initial mild symptoms at presentation with progression to pneumonia on day 9 of illness. This case highlights the importance of close coordination between clinicians and public health authorities at the local, state, and federal levels, as well as the need for rapid dissemination of clinical information related to the care of patients with this emerging infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection 1

            Background & Aims: Severe acute respiratory syndrome (SARS) is a recently emerged infection from a novel coronavirus (CoV). Apart from fever and respiratory complications, gastrointestinal symptoms are frequently observed in patients with SARS but the significance remains undetermined. Herein, we describe the clinical, pathologic, and virologic features of the intestinal involvement of this new viral infection. Methods: A retrospective analysis of the gastrointestinal symptoms and other clinical parameters of the first 138 patients with confirmed SARS admitted for a major outbreak in Hong Kong in March 2003 was performed. Intestinal specimens were obtained by colonoscopy or postmortem examination to detect the presence of coronavirus by electron microscopy, virus culture, and reverse-transcription polymerase chain reaction. Results: Among these 138 patients with SARS, 28 (20.3%) presented with watery diarrhea and up to 38.4% of patients had symptoms of diarrhea during the course of illness. Diarrhea was more frequently observed during the first week of illness. The mean number of days with diarrhea was 3.7 ± 2.7, and most diarrhea was self-limiting. Intestinal biopsy specimens obtained by colonoscopy or autopsy showed minimal architectural disruption but the presence of active viral replication within both the small and large intestine. Coronavirus was also isolated by culture from these specimens, and SARS-CoV RNA can be detected in the stool of patients for more than 10 weeks after symptom onset. Conclusions: Diarrhea is a common presenting symptom of SARS. The intestinal tropism of the SARS-CoV has major implications on clinical presentation and viral transmission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater

              Many of the devastating pandemics and outbreaks of the 20th and 21st centuries have involved enveloped viruses, including influenza, HIV, SARS, MERS, and Ebola. However, little is known about the presence and fate of enveloped viruses in municipal wastewater. Here, we compared the survival and partitioning behavior of two model enveloped viruses (MHV and ϕ6) and two nonenveloped bacteriophages (MS2 and T3) in raw wastewater samples. We showed that MHV and ϕ6 remained infective on the time scale of days. Up to 26% of the two enveloped viruses adsorbed to the solid fraction of wastewater compared to 6% of the two nonenveloped viruses. Based on this partitioning behavior, we assessed and optimized methods for recovering enveloped viruses from wastewater. Our optimized ultrafiltration method resulted in mean recoveries (±SD) of 25.1% (±3.6%) and 18.2% (±9.5%) for the enveloped MHV and ϕ6, respectively, and mean recoveries of 55.6% (±16.7%) and 85.5% (±24.5%) for the nonenveloped MS2 and T3, respectively. A maximum of 3.7% of MHV and 2% of MS2 could be recovered from the solids. These results shed light on the environmental fate of an important group of viruses and the presented methods will enable future research on enveloped viruses in water environments.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol
                Environ. Sci. Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                24 March 2020
                : acs.est.0c01476
                Affiliations
                []Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
                []Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
                Author notes
                [* ]Phone: +1 (734) 763-2125; fax: +1 (734) 764-4292; email: kwigg@ 123456umich.edu .
                Article
                10.1021/acs.est.0c01476
                7099656
                32207922
                cdae9df7-0833-443d-9126-0ab6913667ba
                Copyright © 2020 American Chemical Society

                This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 09 March 2020
                Categories
                Viewpoint
                Custom metadata
                es0c01476
                es0c01476

                General environmental science
                General environmental science

                Comments

                Comment on this article