13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Super-resolution imaging reveals the sub-diffraction phenotype of Zellweger Syndrome ghosts and wild-type peroxisomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peroxisomes are ubiquitous cell organelles involved in many metabolic and signaling functions. Their assembly requires peroxins, encoded by PEX genes. Mutations in PEX genes are the cause of Zellweger Syndrome spectrum (ZSS), a heterogeneous group of peroxisomal biogenesis disorders (PBD). The size and morphological features of peroxisomes are below the diffraction limit of light, which makes them attractive for super-resolution imaging. We applied Stimulated Emission Depletion (STED) microscopy to study the morphology of human peroxisomes and peroxisomal protein localization in human controls and ZSS patients. We defined the peroxisome morphology in healthy skin fibroblasts and the sub-diffraction phenotype of residual peroxisomal structures (‘ghosts’) in ZSS patients that revealed a relation between mutation severity and clinical phenotype. Further, we investigated the 70 kDa peroxisomal membrane protein (PMP70) abundance in relationship to the ZSS sub-diffraction phenotype. This work improves the morphological definition of peroxisomes. It expands current knowledge about peroxisome biogenesis and ZSS pathoethiology to the sub-diffraction phenotype including key peroxins and the characteristics of ghost peroxisomes.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Genetics and molecular basis of human peroxisome biogenesis disorders.

          Human peroxisome biogenesis disorders (PBDs) are a heterogeneous group of autosomal recessive disorders comprised of two clinically distinct subtypes: the Zellweger syndrome spectrum (ZSS) disorders and rhizomelic chondrodysplasia punctata (RCDP) type 1. PBDs are caused by defects in any of at least 14 different PEX genes, which encode proteins involved in peroxisome assembly and proliferation. Thirteen of these genes are associated with ZSS disorders. The genetic heterogeneity among PBDs and the inability to predict from the biochemical and clinical phenotype of a patient with ZSS which of the currently known 13 PEX genes is defective, has fostered the development of different strategies to identify the causative gene defects. These include PEX cDNA transfection complementation assays followed by sequencing of the thus identified PEX genes, and a PEX gene screen in which the most frequently mutated exons of the different PEX genes are analyzed. The benefits of DNA testing for PBDs include carrier testing of relatives, early prenatal testing or preimplantation genetic diagnosis in families with a recurrence risk for ZSS disorders, and insight in genotype-phenotype correlations, which may eventually assist to improve patient management. In this review we describe the current status of genetic analysis and the molecular basis of PBDs. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamin-like protein 1 is involved in peroxisomal fission.

            The mammalian dynamin-like protein 1 (DLP1), a member of the dynamin family of large GTPases, possesses mechanochemical properties known to constrict and tubulate membranes. In this study, we have combined two experimental approaches, induction of peroxisome proliferation by Pex11pbeta and expression of dominant-negative mutants, to test whether DLP1 plays a role in peroxisomal growth and division. We were able to localize DLP1 in spots on tubular peroxisomes in HepG2 cells. In addition, immunoblot analysis revealed the presence of DLP1 in highly purified peroxisomal fractions from rat liver and an increase of DLP1 after treatment of rats with the peroxisome proliferator bezafibrate. Expression of a dominant negative DLP1 mutant deficient in GTP hydrolysis (K38A) either alone or in combination with Pex11pbeta caused the appearance of tubular peroxisomes but had no influence on their intracellular distribution. In co-expressing cells, the formation of tubulo-reticular networks of peroxisomes was promoted, and peroxisomal division was completely inhibited. These findings were confirmed by silencing of DLP1 using siRNA. We propose a direct role for the dynamin-like protein DLP1 in peroxisomal fission and in the maintenance of peroxisomal morphology in mammalian cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution.

              We report on a fiber laser-based stimulated emission-depletion microscope providing down to ∼20 nm resolution in raw data images as well as 15-19 nm diameter probing areas in fluorescence correlation spectroscopy. Stimulated emission depletion pulses of nanosecond duration and 775 nm wavelength are used to silence two fluorophores simultaneously, ensuring offset-free colocalization analysis. The versatility of this superresolution method is exemplified by revealing the octameric arrangement of Xenopus nuclear pore complexes and by quantifying the diffusion of labeled lipid molecules in artificial and living cell membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                sven.thoms@med.uni-goettingen.de
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                17 May 2018
                17 May 2018
                2018
                : 8
                : 7809
                Affiliations
                [1 ]Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
                [2 ]ISNI 0000 0001 2104 4211, GRID grid.418140.8, Department of NanoBiophotonics, , Max Planck Institute for Biophysical Chemistry, ; Am Faßberg 11, 37077 Göttingen, Germany
                [3 ]ISNI 0000 0004 0643 3034, GRID grid.461771.2, Present Address: Optical Nanoscopy, Laser-Laboratorium Göttingen e.V., ; 37077 Göttingen, Germany
                Author information
                http://orcid.org/0000-0003-4692-5511
                http://orcid.org/0000-0003-3018-6363
                Article
                24119
                10.1038/s41598-018-24119-2
                5958128
                29773809
                cdb718bc-1ea9-4737-98af-3ecc0220f32b
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 January 2017
                : 22 March 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article