6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of NBC1 in apical and basolateral HCO3- permeabilities and transendothelial HCO3- fluxes in bovine corneal endothelium.

      American Journal of Physiology - Cell Physiology
      Animals, Bicarbonates, metabolism, Cattle, Cell Polarity, Cells, Cultured, Colforsin, pharmacology, Cornea, anatomy & histology, Endothelial Cells, cytology, drug effects, Enzyme Inhibitors, Humans, Ouabain, Permeability, RNA, Small Interfering, genetics, Sodium-Bicarbonate Symporters, antagonists & inhibitors

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corneal transparency and hydration control are dependent on HCO(3)(-) transport properties of the corneal endothelium. Recent work (13) suggested the presence of an apical 1Na(+)-3HCO(3)(-) cotransporter (NBC1) in addition to a basolateral 1Na(+)-2HCO(3)(-) cotransporter. We examined whether the NBC1 cotransporter contributes significantly to basolateral or apical HCO(3)(-) permeability and whether the cotransporter participates in transendothelial net HCO(3)(-) flux in cultured bovine corneal endothelium. NBC1 protein expression was reduced using small interfering RNA (siRNA). Immunoblot analysis showed that 5-15 nM siRNA decreased NBC1 expression by 80-95%, 4 days posttransfection. Apical and basolateral HCO(3)(-) permeabilities were determined by measuring the rate of pH(i) change when HCO(3)(-) was removed from the bath under constant pH or constant CO(2) conditions. Using either protocol, we found that cultures treated with NBC1 siRNA had sixfold lower basolateral HCO(3)(-) permeability than untreated or siCONTROL siRNA-treated cells. Apical HCO(3)(-) permeability was unaffected by NBC1 siRNA treatment. Net non-steady-state HCO(3)(-) flux was 0.707 +/- 0.009 mM.min(-1).cm(2) in the basolateral-to-apical direction and increased to 1.74 +/- 0.15 when cells were stimulated with 2 muM forskolin. Treatment with 5 nM siRNA decreased basolateral-to-apical flux by 67%, whereas apical-to-basolateral flux was unaffected, significantly decreasing net HCO(3)(-) flux to 0.236 +/- 0.002. NBC1 siRNA treatment or 100 muM ouabain also eliminated steady-state HCO(3)(-) flux, as measured by apical compartment alkalinization. Collectively, reduced basolateral HCO(3)(-) permeability, basolateral-to-apical fluxes, and net HCO(3)(-) flux as a result of reduced expression of NBC1 indicate that NBC1 plays a key role in transendothelial HCO(3)(-) flux and is functional only at the basolateral membrane.

          Related collections

          Author and article information

          Comments

          Comment on this article