2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scene Graph to Image Generation with Contextualized Object Layout Refinement

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Generating high-quality images from scene graphs, that is, graphs that describe multiple entities in complex relations, is a challenging task that attracted substantial interest recently. Prior work trained such models by using supervised learning, where the goal is to produce the exact target image layout for each scene graph. It relied on predicting object locations and shapes independently and in parallel. However, scene graphs are underspecified, and thus the same scene graph often occurs with many target images in the training data. This leads to generated images with high inter-object overlap, empty areas, blurry objects, and overall compromised quality. In this work, we propose a method that alleviates these issues by generating all object layouts together and reducing the reliance on such supervision. Our model predicts layouts directly from embeddings (without predicting intermediate boxes) by gradually upsampling, refining and contextualizing object layouts. It is trained with a novel adversarial loss, that optimizes the interaction between object pairs. This improves coverage and removes overlaps, while maintaining sensible contours and respecting objects relations. We empirically show on the COCO-STUFF dataset that our proposed approach substantially improves the quality of generated layouts as well as the overall image quality. Our evaluation shows that we improve layout coverage by almost 20 points, and drop object overlap to negligible amounts. This leads to better image generation, relation fulfillment and objects quality.

          Related collections

          Author and article information

          Journal
          23 September 2020
          Article
          2009.10939
          cdbc1da4-2bbe-4895-ba32-1dfd126790ff

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.CV

          Computer vision & Pattern recognition
          Computer vision & Pattern recognition

          Comments

          Comment on this article