Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

The Neurostimulation Appropriateness Consensus Committee (NACC): Recommendations on Bleeding and Coagulation Management in Neurostimulation Devices : BLEEDING AND COAGULATION MANAGEMENT

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Related collections

      Most cited references 118

      • Record: found
      • Abstract: found
      • Article: not found

      Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials

      Summary Background Low-dose aspirin is of definite and substantial net benefit for many people who already have occlusive vascular disease. We have assessed the benefits and risks in primary prevention. Methods We undertook meta-analyses of serious vascular events (myocardial infarction, stroke, or vascular death) and major bleeds in six primary prevention trials (95 000 individuals at low average risk, 660 000 person-years, 3554 serious vascular events) and 16 secondary prevention trials (17 000 individuals at high average risk, 43 000 person-years, 3306 serious vascular events) that compared long-term aspirin versus control. We report intention-to-treat analyses of first events during the scheduled treatment period. Findings In the primary prevention trials, aspirin allocation yielded a 12% proportional reduction in serious vascular events (0·51% aspirin vs 0·57% control per year, p=0·0001), due mainly to a reduction of about a fifth in non-fatal myocardial infarction (0·18% vs 0·23% per year, p<0·0001). The net effect on stroke was not significant (0·20% vs 0·21% per year, p=0·4: haemorrhagic stroke 0·04% vs 0·03%, p=0·05; other stroke 0·16% vs 0·18% per year, p=0·08). Vascular mortality did not differ significantly (0·19% vs 0·19% per year, p=0·7). Aspirin allocation increased major gastrointestinal and extracranial bleeds (0·10% vs 0·07% per year, p<0·0001), and the main risk factors for coronary disease were also risk factors for bleeding. In the secondary prevention trials, aspirin allocation yielded a greater absolute reduction in serious vascular events (6·7% vs 8·2% per year, p<0.0001), with a non-significant increase in haemorrhagic stroke but reductions of about a fifth in total stroke (2·08% vs 2·54% per year, p=0·002) and in coronary events (4·3% vs 5·3% per year, p<0·0001). In both primary and secondary prevention trials, the proportional reductions in the aggregate of all serious vascular events seemed similar for men and women. Interpretation In primary prevention without previous disease, aspirin is of uncertain net value as the reduction in occlusive events needs to be weighed against any increase in major bleeds. Further trials are in progress. Funding UK Medical Research Council, British Heart Foundation, Cancer Research UK, and the European Community Biomed Programme.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        A randomized trial of deep-brain stimulation for Parkinson's disease.

        Neurostimulation of the subthalamic nucleus reduces levodopa-related motor complications in advanced Parkinson's disease. We compared this treatment plus medication with medical management. In this randomized-pairs trial, we enrolled 156 patients with advanced Parkinson's disease and severe motor symptoms. The primary end points were the changes from baseline to six months in the quality of life, as assessed by the Parkinson's Disease Questionnaire (PDQ-39), and the severity of symptoms without medication, according to the Unified Parkinson's Disease Rating Scale, part III (UPDRS-III). Pairwise comparisons showed that neurostimulation, as compared with medication alone, caused greater improvements from baseline to six months in the PDQ-39 (50 of 78 pairs, P=0.02) and the UPDRS-III (55 of 78, P<0.001), with mean improvements of 9.5 and 19.6 points, respectively. Neurostimulation resulted in improvements of 24 to 38 percent in the PDQ-39 subscales for mobility, activities of daily living, emotional well-being, stigma, and bodily discomfort. Serious adverse events were more common with neurostimulation than with medication alone (13 percent vs. 4 percent, P<0.04) and included a fatal intracerebral hemorrhage. The overall frequency of adverse events was higher in the medication group (64 percent vs. 50 percent, P=0.08). In this six-month study of patients under 75 years of age with severe motor complications of Parkinson's disease, neurostimulation of the subthalamic nucleus was more effective than medical management alone. (ClinicalTrials.gov number, NCT00196911 [ClinicalTrials.gov].). Copyright 2006 Massachusetts Medical Society.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).

          This article concerning the pharmacokinetics and pharmacodynamics of vitamin K antagonists (VKAs) is part of the American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). It describes the antithrombotic effect of the VKAs, the monitoring of anticoagulation intensity, and the clinical applications of VKA therapy and provides specific management recommendations. Grade 1 recommendations are strong and indicate that the benefits do or do not outweigh the risks, burdens, and costs. Grade 2 recommendations suggest that the individual patient's values may lead to different choices. (For a full understanding of the grading, see the "Grades of Recommendation" chapter by Guyatt et al, CHEST 2008; 133:123S-131S.) Among the key recommendations in this article are the following: for dosing of VKAs, we recommend the initiation of oral anticoagulation therapy, with doses between 5 mg and 10 mg for the first 1 or 2 days for most individuals, with subsequent dosing based on the international normalized ratio (INR) response (Grade 1B); we suggest against pharmacogenetic-based dosing until randomized data indicate that it is beneficial (Grade 2C); and in elderly and other patient subgroups who are debilitated or malnourished, we recommend a starting dose of < or = 5 mg (Grade 1C). The article also includes several specific recommendations for the management of patients with nontherapeutic INRs, with INRs above the therapeutic range, and with bleeding whether the INR is therapeutic or elevated. For the use of vitamin K to reverse a mildly elevated INR, we recommend oral rather than subcutaneous administration (Grade 1A). For patients with life-threatening bleeding or intracranial hemorrhage, we recommend the use of prothrombin complex concentrates or recombinant factor VIIa to immediately reverse the INR (Grade 1C). For most patients who have a lupus inhibitor, we recommend a therapeutic target INR of 2.5 (range, 2.0 to 3.0) [Grade 1A]. We recommend that physicians who manage oral anticoagulation therapy do so in a systematic and coordinated fashion, incorporating patient education, systematic INR testing, tracking, follow-up, and good patient communication of results and dose adjustments [Grade 1B]. In patients who are suitably selected and trained, patient self-testing or patient self-management of dosing are effective alternative treatment models that result in improved quality of anticoagulation management, with greater time in the therapeutic range and fewer adverse events. Patient self-monitoring or self-management, however, is a choice made by patients and physicians that depends on many factors. We suggest that such therapeutic management be implemented where suitable (Grade 2B).
            Bookmark

            Author and article information

            Journal
            Neuromodulation: Technology at the Neural Interface
            Neuromodulation: Technology at the Neural Interface
            Wiley-Blackwell
            10947159
            January 2017
            January 02 2017
            : 20
            : 1
            : 51-62
            10.1111/ner.12542
            © 2017

            http://doi.wiley.com/10.1002/tdm_license_1.1

            Comments

            Comment on this article