1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overfishing Increases the Carbon Footprint of Seafood Production From Small-Scale Fisheries

      , ,
      Frontiers in Marine Science
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small-scale fisheries (SSFs) and the foods they produce are extremely important, contributing 25–50% of global seafood landed for direct consumption. In some cases, SSFs provide seafoods with an exceptionally low carbon footprint, but like all food, it is important to understand the factors that regulate that footprint in the face of increasing demand and a worsening climate-ecological crisis. We utilize long-term fisheries monitoring data from Northwest Mexico to generate novel stock assessments and, subsequently, test the relationship between underlying fishery biomass and fuel intensity observed among several motorized SSFs. Using fuel data from over 4,000 individual fishing trips, in combination with estimated biomass data for 19 regional stocks, we show that the fuel footprint per kilogram of seafood increases sharply as the stock’s underlying annual biomass ( B) falls below its estimated biomass at Maximum Sustainable Yield ( B MSY ). We find an inverse relationship between B/B MSY and fuel intensity using a test for simple correlation between the two ( r= -0.44), a linear regression analysis ( R 2 adj. = 0.17), and a mixed-effects model with gear type, year, and genus modelled as random effects. These results indicate that efforts to end overfishing, rebuild fishery stocks, and/or minimize intensive fishing practices will help to decrease the carbon emissions generated by motorized wild-catch fishing. We anticipate that this study will contribute an important “missing link” to discussions on how best to secure climate-resilient fisheries and, ideally, help SSF stakeholders garner recognition and support for SSFs in this context.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Fitting Linear Mixed-Effects Models Usinglme4

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            lmerTest Package: Tests in Linear Mixed Effects Models

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fishing down marine food webs

              The mean trophic level of the species groups reported in Food and Agricultural Organization global fisheries statistics declined from 1950 to 1994. This reflects a gradual transition in landings from long-lived, high trophic level, piscivorous bottom fish toward short-lived, low trophic level invertebrates and planktivorous pelagic fish. This effect, also found to be occurring in inland fisheries, is most pronounced in the Northern Hemisphere. Fishing down food webs (that is, at lower trophic levels) leads at first to increasing catches, then to a phase transition associated with stagnating or declining catches. These results indicate that present exploitation patterns are unsustainable.
                Bookmark

                Author and article information

                Journal
                Frontiers in Marine Science
                Front. Mar. Sci.
                Frontiers Media SA
                2296-7745
                July 11 2022
                July 11 2022
                : 9
                Article
                10.3389/fmars.2022.768784
                cdc2f045-7885-4d70-afb5-359ec8b4dec2
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article