72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The wheat powdery mildew genome shows the unique evolution of an obligate biotroph.

      Nature genetics
      Adaptation, Biological, Ascomycota, classification, genetics, metabolism, Biological Evolution, Computational Biology, Evolution, Molecular, Gene Order, Genes, Fungal, Genome, Fungal, Genomics, Host-Pathogen Interactions, Molecular Sequence Data, Plant Diseases, microbiology, Polymorphism, Genetic, Triticum

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wheat powdery mildew, Blumeria graminis forma specialis tritici, is a devastating fungal pathogen with a poorly understood evolutionary history. Here we report the draft genome sequence of wheat powdery mildew, the resequencing of three additional isolates from different geographic regions and comparative analyses with the barley powdery mildew genome. Our comparative genomic analyses identified 602 candidate effector genes, with many showing evidence of positive selection. We characterize patterns of genetic diversity and suggest that mildew genomes are mosaics of ancient haplogroups that existed before wheat domestication. The patterns of diversity in modern isolates suggest that there was no pronounced loss of genetic diversity upon formation of the new host bread wheat 10,000 years ago. We conclude that the ready adaptation of B. graminis f.sp. tritici to the new host species was based on a diverse haplotype pool that provided great genetic potential for pathogen variation.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism.

          Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid recent growth and divergence of rice nuclear genomes.

            By employing the nuclear DNA of the African rice Oryza glaberrima as a reference genome, the timing, natures, mechanisms, and specificities of recent sequence evolution in the indica and japonica subspecies of Oryza sativa were identified. The data indicate that the genome sizes of both indica and japonica have increased substantially, >2% and >6%, respectively, since their divergence from a common ancestor, mainly because of the amplification of LTR-retrotransposons. However, losses of all classes of DNA sequence through unequal homologous recombination and illegitimate recombination have attenuated the growth of the rice genome. Small deletions have been particularly frequent throughout the genome. In >1 Mb of orthologous regions that we analyzed, no cases of complete gene acquisition or loss from either indica or japonica were found, nor was any example of precise transposon excision detected. The sequences between genes were observed to have a very high rate of divergence, indicating a molecular clock for transposable elements that is at least 2-fold more rapid than synonymous base substitutions within genes. We found that regions prone to frequent insertions and deletions also exhibit higher levels of point mutation. These results indicate a highly dynamic rice genome with competing processes for the generation and removal of genetic variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome evolution following host jumps in the Irish potato famine pathogen lineage.

              Many plant pathogens, including those in the lineage of the Irish potato famine organism Phytophthora infestans, evolve by host jumps followed by specialization. However, how host jumps affect genome evolution remains largely unknown. To determine the patterns of sequence variation in the P. infestans lineage, we resequenced six genomes of four sister species. This revealed uneven evolutionary rates across genomes with genes in repeat-rich regions showing higher rates of structural polymorphisms and positive selection. These loci are enriched in genes induced in planta, implicating host adaptation in genome evolution. Unexpectedly, genes involved in epigenetic processes formed another class of rapidly evolving residents of the gene-sparse regions. These results demonstrate that dynamic repeat-rich genome compartments underpin accelerated gene evolution following host jumps in this pathogen lineage.
                Bookmark

                Author and article information

                Comments

                Comment on this article