Blog
About

44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The wheat powdery mildew genome shows the unique evolution of an obligate biotroph.

      Nature genetics

      microbiology, Triticum, Polymorphism, Genetic, Plant Diseases, Molecular Sequence Data, Host-Pathogen Interactions, Genomics, Genome, Fungal, Genes, Fungal, Gene Order, Evolution, Molecular, Computational Biology, Biological Evolution, metabolism, genetics, classification, Ascomycota, Adaptation, Biological

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wheat powdery mildew, Blumeria graminis forma specialis tritici, is a devastating fungal pathogen with a poorly understood evolutionary history. Here we report the draft genome sequence of wheat powdery mildew, the resequencing of three additional isolates from different geographic regions and comparative analyses with the barley powdery mildew genome. Our comparative genomic analyses identified 602 candidate effector genes, with many showing evidence of positive selection. We characterize patterns of genetic diversity and suggest that mildew genomes are mosaics of ancient haplogroups that existed before wheat domestication. The patterns of diversity in modern isolates suggest that there was no pronounced loss of genetic diversity upon formation of the new host bread wheat 10,000 years ago. We conclude that the ready adaptation of B. graminis f.sp. tritici to the new host species was based on a diverse haplotype pool that provided great genetic potential for pathogen variation.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: found
          • Article: not found

          Gene prediction with a hidden Markov model and a new intron submodel.

          The problem of finding the genes in eukaryotic DNA sequences by computational methods is still not satisfactorily solved. Gene finding programs have achieved relatively high accuracy on short genomic sequences but do not perform well on longer sequences with an unknown number of genes in them. Here existing programs tend to predict many false exons. We have developed a new program, AUGUSTUS, for the ab initio prediction of protein coding genes in eukaryotic genomes. The program is based on a Hidden Markov Model and integrates a number of known methods and submodels. It employs a new way of modeling intron lengths. We use a new donor splice site model, a new model for a short region directly upstream of the donor splice site model that takes the reading frame into account and apply a method that allows better GC-content dependent parameter estimation. AUGUSTUS predicts on longer sequences far more human and drosophila genes accurately than the ab initio gene prediction programs we compared it with, while at the same time being more specific. A web interface for AUGUSTUS and the executable program are located at http://augustus.gobics.de.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism.

            Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid recent growth and divergence of rice nuclear genomes.

              By employing the nuclear DNA of the African rice Oryza glaberrima as a reference genome, the timing, natures, mechanisms, and specificities of recent sequence evolution in the indica and japonica subspecies of Oryza sativa were identified. The data indicate that the genome sizes of both indica and japonica have increased substantially, >2% and >6%, respectively, since their divergence from a common ancestor, mainly because of the amplification of LTR-retrotransposons. However, losses of all classes of DNA sequence through unequal homologous recombination and illegitimate recombination have attenuated the growth of the rice genome. Small deletions have been particularly frequent throughout the genome. In >1 Mb of orthologous regions that we analyzed, no cases of complete gene acquisition or loss from either indica or japonica were found, nor was any example of precise transposon excision detected. The sequences between genes were observed to have a very high rate of divergence, indicating a molecular clock for transposable elements that is at least 2-fold more rapid than synonymous base substitutions within genes. We found that regions prone to frequent insertions and deletions also exhibit higher levels of point mutation. These results indicate a highly dynamic rice genome with competing processes for the generation and removal of genetic variation.
                Bookmark

                Author and article information

                Journal
                23852167
                10.1038/ng.2704

                Comments

                Comment on this article