20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effectiveness of plant-based repellents against different Anopheles species: a systematic review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant-based repellents have been applied for generations in traditional practice as a personal protection approach against different species of Anopheles. Knowledge of traditional repellent plants is a significant resource for the development of new natural products as an alternative to chemical repellents. Many studies have reported evidence of repellant activities of plant extracts or essential oils against malaria vectors worldwide. This systematic review aimed to assess the effectiveness of plant-based repellents against Anopheles mosquitoes. All eligible studies on the repellency effects of plants against Anopheles mosquitoes published up to July 2018 were systematically searched through PubMed/Medline, Scopus and Google scholar databases. Outcomes measures were percentage repellency and protection time. A total of 62 trials met the inclusion criteria. The highest repellency effect was identified from Ligusticum sinense extract, followed by citronella, pine, Dalbergia sissoo, peppermint and Rhizophora mucronata oils with complete protection time ranging from 9.1 to 11.5 h. Furthermore, essential oils from plants such as lavender, camphor, catnip, geranium, jasmine, broad-leaved eucalyptus, lemongrass, lemon-scented eucalyptus, amyris, narrow-leaved eucalyptus, carotin, cedarwood, chamomile, cinnamon oil, juniper, cajeput, soya bean, rosemary, niaouli, olive, tagetes, violet, sandalwood, litsea, galbanum, and Curcuma longa also showed good repellency with 8 h complete repellency against different species of Anopheles. Essential oils and extracts of some plants could be formulated for the development of eco-friendly repellents against Anopheles species. Plant oils may serve as suitable alternatives to synthetic repellents in the future as they are relatively safe, inexpensive, and are readily available in many parts of the world.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Insect odorant receptors are molecular targets of the insect repellent DEET.

          DEET (N,N-diethyl-meta-toluamide) is the world's most widely used topical insect repellent, with broad effectiveness against most insects. Its mechanism of action and molecular target remain unknown. Here, we show that DEET blocks electrophysiological responses of olfactory sensory neurons to attractive odors in Anopheles gambiae and Drosophila melanogaster. DEET inhibits behavioral attraction to food odors in Drosophila, and this inhibition requires the highly conserved olfactory co-receptor OR83b. DEET inhibits odor-evoked currents mediated by the insect odorant receptor complex, comprising a ligand-binding subunit and OR83b. We conclude that DEET masks host odor by inhibiting subsets of heteromeric insect odorant receptors that require the OR83b co-receptor. The identification of candidate molecular targets for the action of DEET may aid in the design of safer and more effective insect repellents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative repellency of 38 essential oils against mosquito bites.

            The mosquito repellent activity of 38 essential oils from plants at three concentrations was screened against the mosquito Aedes aegypti under laboratory conditions using human subjects. On a volunteer's forearm, 0.1 mL of oil was applied per 30 cm2 of exposed skin. When the tested oils were applied at a 10% or 50% concentration, none of them prevented mosquito bites for as long as 2 h, but the undiluted oils of Cymbopogon nardus (citronella), Pogostemon cablin (patchuli), Syzygium aromaticum (clove) and Zanthoxylum limonella (Thai name: makaen) were the most effective and provided 2 h of complete repellency. From these initial results, three concentrations (10%, 50% and undiluted) of citronella, patchouli, clove and makaen were selected for repellency tests against Culex quinquefasciatus and Anopheles dirus. As expected, the undiluted oil showed the highest protection in each case. Clove oil gave the longest duration of 100% repellency (2-4 h) against all three species of mosquito. (c) 2005 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal.

              Plants produce insect repellents, such as citronellal, which is the main component of citronellal oil. However, the molecular pathways through which insects sense botanical repellents are unknown. Here, we show that Drosophila use two pathways for direct avoidance of citronellal. The olfactory coreceptor OR83b contributes to citronellal repulsion and is essential for citronellal-evoked action potentials. Mutations affecting the Ca(2+)-permeable cation channel TRPA1 result in a comparable defect in avoiding citronellal vapor. The TRPA1-dependent aversion to citronellal relies on a G protein (Gq)/phospholipase C (PLC) signaling cascade rather than direct detection of citronellal by TRPA1. Loss of TRPA1, Gq, or PLC causes an increase in the frequency of citronellal-evoked action potentials in olfactory receptor neurons. Absence of the Ca(2+)-activated K(+) channel (BK channel) Slowpoke results in a similar impairment in citronellal avoidance and an increase in the frequency of action potentials. These results suggest that TRPA1 is required for activation of a BK channel to modulate citronellal-evoked action potentials and for aversion to citronellal. In contrast to Drosophila TRPA1, Anopheles gambiae TRPA1 is directly and potently activated by citronellal, thereby raising the possibility that mosquito TRPA1 may be a target for developing improved repellents to reduce insect-borne diseases such as malaria. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                khoobdel@yahoo.com
                alirezazahraei@yahoo.com
                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                21 December 2019
                21 December 2019
                2019
                : 18
                : 436
                Affiliations
                [1 ]ISNI 0000 0001 0166 0922, GRID grid.411705.6, Department of Medical Entomology and Vector Control, School of Public Health, , Tehran University of Medical Sciences, ; Tehran, Iran
                [2 ]ISNI 0000 0000 9975 294X, GRID grid.411521.2, Health Research Centre, Lifestyle Institute, , Baqiyatallah University of Medical Sciences, ; Tehran, Iran
                [3 ]Medical Sciences Research Centre, Ghalib University, Kabul, Afghanistan
                Author information
                http://orcid.org/0000-0002-8659-3075
                http://orcid.org/0000-0003-1355-294X
                http://orcid.org/0000-0001-7820-3586
                http://orcid.org/0000-0002-3527-981X
                Article
                3064
                10.1186/s12936-019-3064-8
                6925501
                31864359
                cdcde3be-562b-40d3-9f57-335f859e1c07
                © The Author(s) 2019

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 July 2019
                : 8 December 2019
                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                Infectious disease & Microbiology
                plant,herb,repellent,repellency,systematic review,anopheles
                Infectious disease & Microbiology
                plant, herb, repellent, repellency, systematic review, anopheles

                Comments

                Comment on this article