19
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time to cut: population models reveal how to mow invasive common ragweed cost-effectively

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Roadsides are an important habitat for invasive common ragweed, Ambrosiaartemisiifolia L., by facilitating seed dispersal. Reducing the size of roadside populations is therefore essential for confining this highly allergenic species. Here, we aim to determine the cost-effectiveness of mowing regimes varying in frequency and timing, by analysing population-level effects and underlying demographic processes. We constructed population models of A.artemisiifolia parameterised by demographic data for four unmanaged reference populations across Europe in two years. We integrated the effects of four experimental mowing regimes along Austrian road sides on plant performance traits of five years and experimental data on seed viability after cutting. All four experimental regimes reduced the projected intrinsic population growth rates ( r) compared to the unmanaged controls by reducing plant height and seed viability, thereby counteracting increased size-dependent fecundity. The prevailing 2-cut regime in Austria (cutting during vegetative growth, here in June and just before seed ripening, here in September) performed least well and the reduction in r was mainly due to reduced seed viability after the second cut. The efficacy of the two best experimental regimes (alternative schemes for 2 or 3 cuts) was mainly due to cutting just before female flowering (here in August) by decreasing final adult plant height dramatically and thereby reducing seed numbers. Patterns were consistent across reference populations and years. Whether regimes reduced r below replacement level, however, varied per population, year and the survival rate of the seeds in the soil bank. Our model allowed projecting effects of five theoretical mowing regimes with untested combinations of cuts on r. By plotting r-cost relationships for all regimes, we identified the most cost-effective schemes for each cutting frequency (1–3 cuts). They all included the cut just before female flowering, highlighting the importance of cutting at this moment (here in August). Our work features i) the suitability of a modelling approach for the demography of an annual species with a seed bank, ii) the importance of seed viability in assessing mowing effects, iii) the use of population models in designing cost-effective mowing regimes.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          The Physiological Ecology of Plant Succession

          F A Bazzaz (1979)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integral projection models for species with complex demography.

            Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross-classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density-independent models, local stability analysis in density-dependent models, and optimal/evolutionarily stable strategy life-history analysis. Our presentation centers on an IPM for the thistle Onopordum illyricum based on a 6-year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. The online edition of the American Naturalist includes a zip archive of R scripts illustrating our suggested methods.A zip archive of R scripts illustrating our suggested methods is also provided.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A general formula for the sensitivity of population growth rate to changes in life history parameters.

                Bookmark

                Author and article information

                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                June 27 2018
                June 27 2018
                : 39
                : 53-78
                Article
                10.3897/neobiota.39.23398
                cdd43e73-2169-40cd-80d9-7838abb0ad2e
                © 2018

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article