49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Most Plastic Products Release Estrogenic Chemicals: A Potential Health Problem That Can Be Solved

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Chemicals having estrogenic activity (EA) reportedly cause many adverse health effects, especially at low (picomolar to nanomolar) doses in fetal and juvenile mammals.

          Objectives: We sought to determine whether commercially available plastic resins and products, including baby bottles and other products advertised as bisphenol A (BPA) free, release chemicals having EA.

          Methods: We used a roboticized MCF-7 cell proliferation assay, which is very sensitive, accurate, and repeatable, to quantify the EA of chemicals leached into saline or ethanol extracts of many types of commercially available plastic materials, some exposed to common-use stresses (microwaving, ultraviolet radiation, and/or autoclaving).

          Results: Almost all commercially available plastic products we sampled—independent of the type of resin, product, or retail source—leached chemicals having reliably detectable EA, including those advertised as BPA free. In some cases, BPA-free products released chemicals having more EA than did BPA-containing products.

          Conclusions: Many plastic products are mischaracterized as being EA free if extracted with only one solvent and not exposed to common-use stresses. However, we can identify existing compounds, or have developed, monomers, additives, or processing agents that have no detectable EA and have similar costs. Hence, our data suggest that EA-free plastic products exposed to common-use stresses and extracted by saline and ethanol solvents could be cost-effectively made on a commercial scale and thereby eliminate a potential health risk posed by most currently available plastic products that leach chemicals having EA into food products.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Our plastic age

          Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants.

            Estrogens are defined by their ability to induce the proliferation of cells of the female genital tract. The wide chemical diversity of estrogenic compounds precludes an accurate prediction of estrogenic activity on the basis of chemical structure. Rodent bioassays are not suited for the large-scale screening of chemicals before their release into the environment because of their cost, complexity, and ethical concerns. The E-SCREEN assay was developed to assess the estrogenicity of environmental chemicals using the proliferative effect of estrogens on their target cells as an end point. This quantitative assay compares the cell number achieved by similar inocula of MCF-7 cells in the absence of estrogens (negative control) and in the presence of 17 beta-estradiol (positive control) and a range of concentrations of chemicals suspected to be estrogenic. Among the compounds tested, several "new" estrogens were found; alkylphenols, phthalates, some PCB congeners and hydroxylated PCBs, and the insecticides dieldrin, endosulfan, and toxaphene were estrogenic by the E-SCREEN assay. In addition, these compounds competed with estradiol for binding to the estrogen receptor and increased the levels of progesterone receptor and pS2 in MCF-7 cells, as expected from estrogen mimics. Recombinant human growth factors (bFGF, EGF, IGF-1) and insulin did not increase in cell yields. The aims of the work summarized in this paper were a) to validate the E-SCREEN assay; b) to screen a variety of chemicals present in the environment to identify those that may be causing reproductive effects in wildlife and humans; c) to assess whether environmental estrogens may act cumulatively; and finally d) to discuss the reliability of this and other assays to screen chemicals for their estrogenicity before they are released into the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phthalates and other additives in plastics: human exposure and associated health outcomes.

              Concern exists over whether additives in plastics to which most people are exposed, such as phthalates, bisphenol A or polybrominated diphenyl ethers, may cause harm to human health by altering endocrine function or through other biological mechanisms. Human data are limited compared with the large body of experimental evidence documenting reproductive or developmental toxicity in relation to these compounds. Here, we discuss the current state of human evidence, as well as future research trends and needs. Because exposure assessment is often a major weakness in epidemiological studies, and in utero exposures to reproductive or developmental toxicants are important, we also provide original data on maternal exposure to phthalates during and after pregnancy (n = 242). Phthalate metabolite concentrations in urine showed weak correlations between pre- and post-natal samples, though the strength of the relationship increased when duration between the two samples decreased. Phthalate metabolite levels also tended to be higher in post-natal samples. In conclusion, there is a great need for more human studies of adverse health effects associated with plastic additives. Recent advances in the measurement of exposure biomarkers hold much promise in improving the epidemiological data, but their utility must be understood to facilitate appropriate study design.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                02 March 2011
                01 July 2011
                : 119
                : 7
                : 989-996
                Affiliations
                [1 ]CertiChem Inc., Austin, Texas, USA
                [2 ]PlastiPure Inc., Austin, Texas, USA
                [3 ]Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
                [4 ]Neurobiology Section, School of Biology, University of Texas, Austin, Texas, USA
                Author notes
                Address correspondence to G.D. Bittner, CertiChem, Inc., 11212 Metric Blvd., Suite 500, Austin, TX 78758 USA. Telephone: (512) 339-0550, ext. 201; Fax: (512) 339-0551. E-mail: gbittner@ 123456certichem.com
                Article
                1003220
                10.1289/ehp.1003220
                3222987
                21367689
                cdd6a8de-8686-498b-a3dd-a1157d6aa2cd
                Copyright @ 2011

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 November 2010
                : 24 February 2011
                Categories
                Article

                Public health
                estrogen receptor binding,bisphenol a,estrogenic activity,endocrine disruptor,plastic,endocrine-disrupting chemical

                Comments

                Comment on this article