0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of five novel vasopressin V2 receptor mutants causing nephrogenic diabetes insipidus reveals a role of tolvaptan for M272R-V2R mutation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nephrogenic diabetes insipidus (NDI) is a rare tubulopathy characterized by urinary concentration defect due to renal resistance to vasopressin. Loss-of-function mutations of vasopressin V2 receptor (V2R) gene ( AVPR2) is the most common cause of the disease. We have identified five novel mutations L86P, R113Q, C192S, M272R, and W323_I324insR from NDI-affected patients. Functional characterization of these mutants revealed that R113Q and C192S were normally localized at the basolateral membrane of polarized Madin-Darby Canine Kidney (MDCK) cells and presented proper glycosylation maturation. On the other side, L86P, M272R, and W323_I324insR mutants were retained in endoplasmic reticulum and exhibited immature glycosylation and considerably reduced stability. All five mutants were resistant to administration of vasopressin analogues as evaluated by defective response in cAMP release. In order to rescue the function of the mutated V2R, we tested VX-809, sildenafil citrate, ibuprofen and tolvaptan in MDCK cells. Among these, tolvaptan was effective in rescuing the function of M272R mutation, by both allowing proper glycosylation maturation, membrane sorting and response to dDAVP. These results show an important proof of concept for the use of tolvaptan in patients affected by M272R mutation of V2R causing NDI.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GPCRdb in 2018: adding GPCR structure models and ligands

          Abstract G protein-coupled receptors are the most abundant mediators of both human signalling processes and therapeutic effects. Herein, we report GPCRome-wide homology models of unprecedented quality, and roughly 150 000 GPCR ligands with data on biological activities and commercial availability. Based on the strategy of ‘Less model – more Xtal’, each model exploits both a main template and alternative local templates. This achieved higher similarity to new structures than any of the existing resources, and refined crystal structures with missing or distorted regions. Models are provided for inactive, intermediate and active states—except for classes C and F that so far only have inactive templates. The ligand database has separate browsers for: (i) target selection by receptor, family or class, (ii) ligand filtering based on cross-experiment activities (min, max and mean) or chemical properties, (iii) ligand source data and (iv) commercial availability. SMILES structures and activity spreadsheets can be downloaded for further processing. Furthermore, three recent landmark publications on GPCR drugs, G protein selectivity and genetic variants have been accompanied with resources that now let readers view and analyse the findings themselves in GPCRdb. Altogether, this update will enable scientific investigation for the wider GPCR community. GPCRdb is available at http://www.gpcrdb.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants.

            Over 150 mutations within the coding sequence of the V2 vasopressin receptor (V2R) gene are known to cause nephrogenic diabetes insipidus (NDI). A large number of these mutant receptors fail to fold properly and therefore are not routed to the cell surface. Here we show that selective, nonpeptidic V2R antagonists dramatically increase cell-surface expression and rescue the function of 8 mutant NDI-V2Rs by promoting their proper folding and maturation. A cell-impermeant V2R antagonist could not mimic these effects and was unable to block the rescue mediated by a permeant agent, indicating that the nonpeptidic antagonists act intracellularly, presumably by binding to and stabilizing partially folded mutants. In addition to opening new therapeutic avenues for NDI patients, these data demonstrate that by binding to newly synthesized mutant receptors, small ligands can act as pharmacological chaperones, promoting the proper folding and maturation of receptors and their targeting to the cell surface.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nephrogenic diabetes insipidus.

              Nephrogenic diabetes insipidus, which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone arginine vasopressin. Polyuria, with hyposthenuria, and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital nephrogenic diabetes insipidus are males with the X-linked recessive form of the disease (OMIM 304800) who have mutations in the arginine vasopressin receptor 2 gene (AVPR2), which codes for the vasopressin V2 receptor. The gene is located in chromosomal region Xq28. In <10% of the families studied, congenital nephrogenic diabetes insipidus has an autosomal-recessive or autosomal-dominant (OMIM 222000 and 125800, respectively) mode of inheritance. Mutations have been identified in the aquaporin-2 gene (AQP2), which is located in chromosome region 12q13 and codes for the vasopressin-sensitive water channel. When studied in vitro, most AVPR2 mutations result in receptors that are trapped intracellularly and are unable to reach the plasma membrane. A few mutant receptors reach the cell surface but are unable to bind arginine vasopressin or to properly trigger an intracellular cyclic AMP signal. Similarly, aquaporin-2 mutant proteins are misrouted and cannot be expressed at the luminal membrane. Chemical or pharmacological chaperones have been found to reverse the intracellular retention of aquaporin-2 and arginine vasopressin receptor 2 mutant proteins. Because many hereditary diseases stem from the intracellular retention of otherwise functional proteins, this mechanism may offer a new therapeutic approach to the treatment of those diseases that result from errors in protein kinesis.
                Bookmark

                Author and article information

                Contributors
                Francesco.trepiccione@unicampania.it
                Journal
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                2 October 2020
                2 October 2020
                2020
                : 10
                Affiliations
                [1 ]GRID grid.428067.f, ISNI 0000 0004 4674 1402, Biogem S.c.a.r.l., Istituto Di Ricerche Genetiche “Gaetano Salvatore”, ; Ariano Irpino, Italy
                [2 ]Department of Woman, Child and of General and Specialized Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
                [3 ]GRID grid.17089.37, Department of Physiology, , The University of Alberta, ; Edmonton, Canada
                [4 ]Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, Naples, Italy
                Article
                73089
                10.1038/s41598-020-73089-x
                7532466
                33009446
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized

                nephrons, acid, base, fluid, electrolyte disorders

                Comments

                Comment on this article