49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function

      ros signaling, mitochondrial energetic/redox, complex oscillations, hopf bifurcations, physiological and pathophysiological behavior, redox environment

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The time-keeping properties bestowed by oscillatory behavior on functional rhythms represent an evolutionarily conserved trait in living systems. Mitochondrial networks function as timekeepers maximizing energetic output while tuning reactive oxygen species (ROS) within physiological levels compatible with signaling. In this work, we explore the potential for timekeeping functions dependent on mitochondrial dynamics with the validated two-compartment mitochondrial energetic-redox (ME-R) computational model, that takes into account (a) four main redox couples [NADH, NADPH, GSH, Trx(SH)2], (b) scavenging systems (glutathione, thioredoxin, SOD, catalase) distributed in matrix and extra-matrix compartments, and (c) transport of ROS species between them. Herein, we describe that the ME-R model can exhibit highly complex oscillatory dynamics in energetic/redox variables and ROS species, consisting of at least five frequencies with modulated amplitudes and period according to power spectral analysis. By stability analysis we describe that the extent of steady state—as against complex oscillatory behavior—was dependent upon the abundance of Mn and Cu, Zn SODs, and their interplay with ROS production in the respiratory chain. Large parametric regions corresponding to oscillatory dynamics of increasingly complex waveforms were obtained at low Cu, Zn SOD concentration as a function of Mn SOD. This oscillatory domain was greatly reduced at higher levels of Cu, Zn SOD. Interestingly, the realm of complex oscillations was located at the edge between normal and pathological mitochondrial energetic behavior, and was characterized by oxidative stress. We conclude that complex oscillatory dynamics could represent a frequency- and amplitude-modulated H2O2 signaling mechanism that arises under intense oxidative stress. By modulating SOD, cells could have evolved an adaptive compromise between relative constancy and the flexibility required under stressful redox/energetic conditions.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Superoxide dismutases: role in redox signaling, vascular function, and diseases.

          Excessive reactive oxygen species Revised abstract, especially superoxide anion (O₂•-), play important roles in the pathogenesis of many cardiovascular diseases, including hypertension and atherosclerosis. Superoxide dismutases (SODs) are the major antioxidant defense systems against (O₂•-), which consist of three isoforms of SOD in mammals: the cytoplasmic Cu/ZnSOD (SOD1), the mitochondrial MnSOD (SOD2), and the extracellular Cu/ZnSOD (SOD3), all of which require catalytic metal (Cu or Mn) for their activation. Recent evidence suggests that in each subcellular location, SODs catalyze the conversion of (O₂•-), H2O2, which may participate in cell signaling. In addition, SODs play a critical role in inhibiting oxidative inactivation of nitric oxide, thereby preventing peroxynitrite formation and endothelial and mitochondrial dysfunction. The importance of each SOD isoform is further illustrated by studies from the use of genetically altered mice and viral-mediated gene transfer. Given the essential role of SODs in cardiovascular disease, the concept of antioxidant therapies, that is, reinforcement of endogenous antioxidant defenses to more effectively protect against oxidative stress, is of substantial interest. However, the clinical evidence remains controversial. In this review, we will update the role of each SOD in vascular biologies, physiologies, and pathophysiologies such as atherosclerosis, hypertension, and angiogenesis. Because of the importance of metal cofactors in the activity of SODs, we will also discuss how each SOD obtains catalytic metal in the active sites. Finally, we will discuss the development of future SOD-dependent therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hydroperoxide metabolism in mammalian organs.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cellular production of hydrogen peroxide.

              1. The enzyme-substrate complex of yeast cytochrome c peroxidase is used as a sensitive, specific and accurate spectrophotometric H(2)O(2) indicator. 2. The cytochrome c peroxidase assay is suitable for use with subcellular fractions from tissue homogenates as well as with pure enzyme systems to measure H(2)O(2) generation. 3. Mitochondrial substrates entering the respiratory chain on the substrate side of the antimycin A-sensitive site support the mitochondrial generation of H(2)O(2). Succinate, the most effective substrate, yields H(2)O(2) at a rate of 0.5nmol/min per mg of protein in state 4. H(2)O(2) generation is decreased in the state 4-->state 3 transition. 4. In the combined mitochondrial-peroxisomal fraction of rat liver the changes in the mitochondrial generation of H(2)O(2) modulated by substrate, ADP and antimycin A are followed by parallel changes in the saturation of the intraperoxisomal catalase intermediate. 5. Peroxisomes supplemented with uric acid generate extraperoxisomal H(2)O(2) at a rate (8.6-16.4nmol/min per mg of protein) that corresponds to 42-61% of the rate of uric acid oxidation. Addition of azide increases these H(2)O(2) rates by a factor of 1.4-1.7. 6. The concentration of cytosolic uric acid is shown to vary during the isolation of the cellular fractions. 7. Microsomal fractions produce H(2)O(2) (up to 1.7nmol/min per mg of protein) at a ratio of 0.71-0.86mol of H(2)O(2)/mol of NADP(+) during the oxidation of NADPH. H(2)O(2) is also generated (6-25%) during the microsomal oxidation of NADH (0.06-0.025mol of H(2)O(2)/mol of NAD(+)). 8. Estimation of the rates of production of H(2)O(2) under physiological conditions can be made on the basis of the rates with the isolated fractions. The tentative value of 90nmol of H(2)O(2)/min per g of liver at 22 degrees C serves as a crude approximation to evaluate the biochemical impact of H(2)O(2) on cellular metabolism.
                Bookmark

                Author and article information

                Journal
                4085651
                10.3389/fphys.2014.00257
                25071602
                http://creativecommons.org/licenses/by/3.0/

                Anatomy & Physiology
                ros signaling,mitochondrial energetic/redox,complex oscillations,hopf bifurcations,physiological and pathophysiological behavior,redox environment

                Comments

                Comment on this article