54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution and Diversity of Transposable Elements in Vertebrate Genomes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4–60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.

          Related collections

          Most cited references178

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The zebrafish reference genome sequence and its relationship to the human genome.

          Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genomic substrate for adaptive radiation in African cichlid fish

            Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              nhmmer: DNA homology search with profile HMMs

              Summary: Sequence database searches are an essential part of molecular biology, providing information about the function and evolutionary history of proteins, RNA molecules and DNA sequence elements. We present a tool for DNA/DNA sequence comparison that is built on the HMMER framework, which applies probabilistic inference methods based on hidden Markov models to the problem of homology search. This tool, called nhmmer, enables improved detection of remote DNA homologs, and has been used in combination with Dfam and RepeatMasker to improve annotation of transposable elements in the human genome. Availability: nhmmer is a part of the new HMMER3.1 release. Source code and documentation can be downloaded from http://hmmer.org. HMMER3.1 is freely licensed under the GNU GPLv3 and should be portable to any POSIX-compliant operating system, including Linux and Mac OS/X. Contact: wheelert@janelia.hhmi.org
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                January 2017
                1 February 2017
                1 February 2017
                : 9
                : 1
                : 161-177
                Affiliations
                [1 ]Department of Biological Sciences, Texas Tech University, Lubbock, TX
                [2 ]Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
                Author notes

                Evolution and Diversity of Transposable Elements in Vertebrate Genomes

                Associate editor: Kateryna Makova

                [†]

                These authors contributed equally to this work.

                [* ]Corresponding author: E-mail: david.4.ray@ 123456gmail.com .
                Article
                evw264
                10.1093/gbe/evw264
                5381603
                28158585
                cdee557f-5e14-4612-9d48-13253f1d251b
                © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 6 December 2016
                Page count
                Pages: 17
                Funding
                Award ID: DEB-1355176
                Award ID: DEB-1020865
                Award ID: MCB-0841821
                Award ID: MCB-1052500
                Categories
                Review

                Genetics
                vertebrate,transposable element,transposons,retrotransposons
                Genetics
                vertebrate, transposable element, transposons, retrotransposons

                Comments

                Comment on this article