47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      HSP72 protects against obesity-induced insulin resistance

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with type 2 diabetes have reduced gene expression of heat shock protein (HSP) 72, which correlates with reduced insulin sensitivity. Heat therapy, which activates HSP72, improves clinical parameters in these patients. Activation of several inflammatory signaling proteins such as c-jun amino terminal kinase (JNK), inhibitor of kappaB kinase, and tumor necrosis factor-alpha, can induce insulin resistance, but HSP 72 can block the induction of these molecules in vitro. Accordingly, we examined whether activation of HSP72 can protect against the development of insulin resistance. First, we show that obese, insulin resistant humans have reduced HSP72 protein expression and increased JNK phosphorylation in skeletal muscle. We next used heat shock therapy, transgenic overexpression, and pharmacologic means to overexpress HSP72 either specifically in skeletal muscle or globally in mice. Herein, we show that regardless of the means used to achieve an elevation in HSP72 protein, protection against diet- or obesity-induced hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance was observed. This protection was tightly associated with the prevention of JNK phosphorylation. These findings identify an essential role for HSP72 in blocking inflammation and preventing insulin resistance in the context of genetic obesity or high-fat feeding.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          IKK-beta links inflammation to obesity-induced insulin resistance.

          Inflammation may underlie the metabolic disorders of insulin resistance and type 2 diabetes. IkappaB kinase beta (IKK-beta, encoded by Ikbkb) is a central coordinator of inflammatory responses through activation of NF-kappaB. To understand the role of IKK-beta in insulin resistance, we used mice lacking this enzyme in hepatocytes (Ikbkb(Deltahep)) or myeloid cells (Ikbkb(Deltamye)). Ikbkb(Deltahep) mice retain liver insulin responsiveness, but develop insulin resistance in muscle and fat in response to high fat diet, obesity or aging. In contrast, Ikbkb(Deltamye) mice retain global insulin sensitivity and are protected from insulin resistance. Thus, IKK-beta acts locally in liver and systemically in myeloid cells, where NF-kappaB activation induces inflammatory mediators that cause insulin resistance. These findings demonstrate the importance of liver cell IKK-beta in hepatic insulin resistance and the central role of myeloid cells in development of systemic insulin resistance. We suggest that inhibition of IKK-beta, especially in myeloid cells, may be used to treat insulin resistance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cells in stress: transcriptional activation of heat shock genes.

            R Morimoto (1993)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heat shock response modulators as therapeutic tools for diseases of protein conformation.

              The disruption of protein folding quality control results in the accumulation of a non-native protein species that can form oligomers, aggregates, and inclusions indicative of neurodegenerative disease. Likewise for over 100 other human diseases of protein confirmation, a common feature may be the formation of off-pathway folding intermediates that are unstable, self-associate, and with time lead to a chronic imbalance in protein homeostasis with deleterious consequences on cellular function. This has led to a hypothesis that enhancement of components of the cellular quality control machinery, specifically the levels and activities of molecular chaperones, suppress aggregation and toxicity phenotypes to allow cellular function to be restored. This review addresses the regulation of molecular chaperones and components of protein homeostasis by heat shock transcription factor 1 (HSF1), the master stress-inducible regulator, and our current understanding of pharmacologically active small molecule regulators of the heat shock response as a therapeutic strategy for protein conformational diseases.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 05 2008
                February 05 2008
                January 25 2008
                February 05 2008
                : 105
                : 5
                : 1739-1744
                Article
                10.1073/pnas.0705799105
                2234214
                18223156
                cdf17120-691f-4d9e-93ac-a007429bc662
                © 2008
                History

                Comments

                Comment on this article