27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eosinophils in Autoimmune Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs.

          Related collections

          Most cited references296

          • Record: found
          • Abstract: found
          • Article: not found

          The eosinophil.

          Eosinophils have been considered end-stage cells involved in host protection against parasites. However, numerous lines of evidence have now changed this perspective by showing that eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of diverse inflammatory responses, as well as modulators of innate and adaptive immunity. In this review, we summarize the biology of eosinophils, focusing on the growing properties of eosinophil-derived products, including the constituents of their granules as well as the mechanisms by which they release their pleiotropic mediators. We examine new views on the role of eosinophils in homeostatic function, including developmental biology and innate and adaptive immunity (as well as interaction with mast cells and T cells). The molecular steps involved in eosinophil development and trafficking are described, with special attention to the important role of the transcription factor GATA-1, the eosinophil-selective cytokine IL-5, and the eotaxin subfamily of chemokines. We also review the role of eosinophils in disease processes, including infections, asthma, and gastrointestinal disorders, and new data concerning genetically engineered eosinophil-deficient mice. Finally, strategies for targeted therapeutic intervention in eosinophil-mediated mucosal diseases are conceptualized.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Eosinophils: changing perspectives in health and disease

            Key Points Eosinophils have been traditionally perceived as terminally differentiated cytotoxic effector cells. Recent studies have provided a more sophisticated understanding of eosinophil effector functions and a more nuanced view of their contributions to the pathogenesis of various diseases, including asthma and respiratory allergies, eosinophilic gastrointestinal diseases, hypereosinophilic syndromes and parasitic infection. Eosinophils are granulocytes that develop in the bone marrow from pluripotent progenitors in response to cytokines, such as interleukin-5 (IL-5), IL-3 and granulocyte–macrophage colony-stimulating factor (GM-CSF). Mature eosinophils are released into the peripheral blood and enter tissues in response to cooperative signalling between IL-5 and eotaxin family chemokines. Eosinophils in peripheral blood and tissues are uniquely identified by their bilobed nuclei, their large specific granules that store cytokines, cationic proteins and enzymes, and their expression of the IL-5 receptor and CC-chemokine receptor 3 (CCR3). In addition, the receptors sialic acid-binding immunoglobulin-like lectin 8 (SIGLEC-8) and SIGLEC-F are expressed by human and mouse eosinophils, respectively. IL-5 has a central and profound role in all aspects of eosinophil development, activation and survival. IL-5 is produced by T helper 2 (TH2) cells, and more recently the contributions of the epithelium-derived innate cytokines thymic stromal lymphopoietin (TSLP), IL-25 and IL-33 in promoting eosinophilia via the induction of IL-5 have also been recognized. Although eosinophil responses are influenced by cytokines produced by T cells, eosinophils in turn modulate the functions of B and T cells. Eosinophils also communicate with a range of innate immune cells (such as mast cells, dendritic cells, macrophages and neutrophils). Eosinophils serve to bridge innate and adaptive immunity by regulating the production of chemoattractants and cytokines (including CC-chemokine ligand 17 (CCL17), CCL22, a proliferation-inducing ligand (APRIL) and IL-6) and via antigen presentation. Both successful and unsuccessful attempts to target eosinophils have yielded remarkable insights into their contribution to disease pathogenesis. Many eosinophil-associated inflammatory conditions have been shown to be heterogeneous in nature. As such, successful therapeutic strategies will depend on the correlation of disease activity with dysregulated eosinophil function as well as the identification of the crucial molecules that regulate eosinophil accumulation in the affected tissues. Supplementary information The online version of this article (doi:10.1038/nri3341) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                27 April 2017
                2017
                : 8
                : 484
                Affiliations
                [1] 1W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health , Baltimore, MD, USA
                [2] 2Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School , Boston, MA, USA
                [3] 3Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, MD, USA
                Author notes

                Edited by: Uday Kishore, Brunel University London, UK

                Reviewed by: David Voehringer, University of Erlangen-Nuremberg, Germany; Cordula M. Stover, University of Leicester, UK

                *Correspondence: Daniela Čiháková, dcihako1@ 123456jhmi.edu

                Specialty section: This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00484
                5406413
                28496445
                cdfb8036-9a95-4dcd-811b-a21e9d89649f
                Copyright © 2017 Diny, Rose and Čiháková.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 February 2017
                : 07 April 2017
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 327, Pages: 19, Words: 16972
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: R01HL113008, R01HL118183
                Funded by: American Heart Association 10.13039/100000968
                Award ID: 15PRE25400010
                Funded by: American Autoimmune Related Diseases Association 10.13039/100002572
                Funded by: Johns Hopkins Bloomberg School of Public Health 10.13039/100008309
                Award ID: Richard J and Margaret Conn Himelfarb Student Support
                Categories
                Immunology
                Review

                Immunology
                innate immune system,autoimmune diseases,eosinophilia,bullous pemphigoid,neuromyelitis optica,eosinophilic granulomatosis with polyangiitis,myocarditis,inflammatory bowel disease

                Comments

                Comment on this article