21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intermittent hypoxia-induced rat pancreatic β-cell apoptosis and protective effects of antioxidant intervention

      research-article
      1 , 1 , * , 1 , 1 , 1 , 1
      Nutrition & Diabetes
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose:

          Obstructive sleep apnea hypopnea syndrome (OSAHS), a common sleep and breathing disorder, is independently associated with metabolic dysfunction, including impaired glucose tolerance and insulin resistance. Intermittent hypoxia (IH), a pathological component of OSAHS, increases oxidative stress damage to pancreatic β-cells in animal models resembling patients with OSAHS. However, the precise mechanisms of IH-induced pancreatic β-cell dysfunction are not fully understood. In the present study, we established a mice model to investigate the underlying mechanisms of oxidative stress in IH-induced pancreatic β-cell apoptosis through antioxidant N-acetylcysteine (NAC) pretreatment.

          Methods:

          Twenty-four Wistar rats were randomly divided into four experimental groups: normal control group, intermittent normoxia group, IH group and antioxidant intervention group. Pancreatic β-cell apoptosis rates were detected by terminal deoxynucleotidyl transferase-mediated dUTP-nick end-labeling; Bcl-2 and Bax protein expressions were detected by immunohistochemistry staining and western blotting.

          Results:

          In our study, we demonstrated that IH exposure causes an increased activation of pancreatic β-cell apoptosis compared with that in the normal control group and intermittent normoxia group, accompanied by the downregulation of Bcl-2 and upregulation of Bax ( P<0.05). Furthermore, compared with the IH group, antioxidant (NAC) pretreatment significantly decreased IH-mediated β-cell apoptosis and reversed the ratio of Bcl-2/Bax expression ( P<0.05).

          Conclusion:

          Taken together, these results demonstrate a critical role of oxidative stress in the regulation of apoptosis through Bcl-2 and Bax signaling. The antioxidant NAC has a protective effect against IH-induced pancreatic β-cell apoptosis.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The chemistry and biological activities of N-acetylcysteine.

          N-acetylcysteine (NAC) has been in clinical practice for several decades. It has been used as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication, doxorubicin cardiotoxicity, ischemia-reperfusion cardiac injury, acute respiratory distress syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, heavy metal toxicity and psychiatric disorders. The mechanisms underlying the therapeutic and clinical applications of NAC are complex and still unclear. The present review is focused on the chemistry of NAC and its interactions and functions at the organ, tissue and cellular levels in an attempt to bridge the gap between its recognized biological activities and chemistry. The antioxidative activity of NAC as of other thiols can be attributed to its fast reactions with OH, NO2, CO3(-) and thiyl radicals as well as to restitution of impaired targets in vital cellular components. NAC reacts relatively slowly with superoxide, hydrogen-peroxide and peroxynitrite, which cast some doubt on the importance of these reactions under physiological conditions. The uniqueness of NAC is most probably due to efficient reduction of disulfide bonds in proteins thus altering their structures and disrupting their ligand bonding, competition with larger reducing molecules in sterically less accessible spaces, and serving as a precursor of cysteine for GSH synthesis. The outlined reactions only partially explain the diverse biological effects of NAC, and further studies are required for determining its ability to cross the cell membrane and the blood-brain barrier as well as elucidating its reactions with components of cell signaling pathways. Copyright © 2013 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection.

            Chronic exposure to hyperglycemia can lead to cellular dysfunction that may become irreversible over time, a process that is termed glucose toxicity. Our perspective about glucose toxicity as it pertains to the pancreatic beta-cell is that the characteristic decreases in insulin synthesis and secretion are caused by decreased insulin gene expression. The responsible metabolic lesion appears to involve a posttranscriptional defect in pancreas duodenum homeobox-1 (PDX-1) mRNA maturation. PDX-1 is a critically important transcription factor for the insulin promoter, is absent in glucotoxic islets, and, when transfected into glucotoxic beta-cells, improves insulin promoter activity. Because reactive oxygen species are produced via oxidative phosphorylation during anaerobic glycolysis, via the Schiff reaction during glycation, via glucose autoxidation, and via hexosamine metabolism under supraphysiological glucose concentrations, we hypothesize that chronic oxidative stress is an important mechanism for glucose toxicity. Support for this hypothesis is found in the observations that high glucose concentrations increase intraislet peroxide levels, that islets contain very low levels of antioxidant enzyme activities, and that adenoviral overexpression of antioxidant enzymes in vitro in islets, as well as exogenous treatment with antioxidants in vivo in animals, protect the islet from the toxic effects of excessive glucose levels. Clinically, consideration of antioxidants as adjunct therapy in type 2 diabetes is warranted because of the many reports of elevated markers of oxidative stress in patients with this disease, which is characterized by imperfect management of glycemia, consequent chronic hyperglycemia, and relentless deterioration of beta-cell function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse.

              Exogenous superoxide dismutase, catalase and scavengers of the hydroxyl radical protect pancreatic-islet cells against the toxic actions of alloxan in vitro [Grankvist et al. (1979) Biochem. J. 182, 17--25]. To test whether the extraordinary sensitivity of islet cells to alloxan is due to a deficiency of endogenous enzymes protecting against oxygen-reduction products, we assayed CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in mouse islets and other tissues. To correct for any blood contamination, haemoglobin was also measured in the tissue samples. Pancreatic islets were found to belong to tissues with relatively little activity of the protective enzymes. However, the deviation from other tissues in this respect is probably not large enough to explain the especially great susceptibility of islet cells to alloxan.
                Bookmark

                Author and article information

                Journal
                Nutr Diabetes
                Nutr Diabetes
                Nutrition & Diabetes
                Nature Publishing Group
                2044-4052
                September 2014
                01 September 2014
                1 September 2014
                : 4
                : 9
                : e131
                Affiliations
                [1 ]Tianjin Medical University General Hospital, Department of Geriatrics, Tianjin Geriatrics Institute , Tianjin, China
                Author notes
                [* ]Tianjin Medical University General Hospital, Department of Geriatrics, Tianjin Geriatrics Institute, Anshan Road , Tianjin 300052, China. E-mail: zhangqiangyulv@ 123456163.com
                Article
                nutd201428
                10.1038/nutd.2014.28
                4183969
                25177911
                cdff60b2-0ba9-47bf-be6d-2af9c031b38e
                Copyright © 2014 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 01 February 2014
                : 23 June 2014
                : 29 June 2014
                Categories
                Original Article

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article