26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNAs in Nonalcoholic Fatty Liver Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disorder. Strongly linked to obesity and diabetes, NAFLD has the characteristics of complex diseases with substantial heterogeneity. Accordingly, our ability to predict the risk of advanced NAFLD and provide efficient treatment may improve by a better understanding of the relationship between genotype and phenotype. MicroRNAs (miRNAs) play a major role in the fine-tuning of gene expression and they have recently emerged as novel biomarkers and therapeutic tools in the management of NAFLD. These short non-coding RNA sequences act by partial repression or degradation of targeted mRNAs. Deregulation of miRNAs has been associated with different stages of NAFLD, while their biological role in the pathogenesis remains to be fully understood. Systems biology analyses based on predicted target genes have associated hepatic miRNAs with molecular pathways involved in NAFLD progression such as cholesterol and lipid metabolism, insulin signaling, oxidative stress, inflammation, and pathways of cell survival and proliferation. Moreover, circulating miRNAs have been identified as promising noninvasive biomarkers of NAFLD and linked to disease severity. This rapidly growing field is likely to result in major advances in the pathomechanism, prognostication, and treatment of NAFLD.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide association studies for complex traits: consensus, uncertainty and challenges.

          The past year has witnessed substantial advances in understanding the genetic basis of many common phenotypes of biomedical importance. These advances have been the result of systematic, well-powered, genome-wide surveys exploring the relationships between common sequence variation and disease predisposition. This approach has revealed over 50 disease-susceptibility loci and has provided insights into the allelic architecture of multifactorial traits. At the same time, much has been learned about the successful prosecution of association studies on such a scale. This Review highlights the knowledge gained, defines areas of emerging consensus, and describes the challenges that remain as researchers seek to obtain more complete descriptions of the susceptibility architecture of biomedical traits of interest and to translate the information gathered into improvements in clinical management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.

            MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate protein expression by targeting the mRNA of protein-coding genes for either cleavage or repression of translation. The roles of miRNAs in lineage determination and proliferation as well as the location of several miRNA genes at sites of translocation breakpoints or deletions has led to the speculation that miRNAs could be important factors in the development or maintenance of the neoplastic state. Here we show that the highly malignant human brain tumor, glioblastoma, strongly over-expresses a specific miRNA, miR-21. Our studies show markedly elevated miR-21 levels in human glioblastoma tumor tissues, early-passage glioblastoma cultures, and in six established glioblastoma cell lines (A172, U87, U373, LN229, LN428, and LN308) compared with nonneoplastic fetal and adult brain tissues and compared with cultured nonneoplastic glial cells. Knockdown of miR-21 in cultured glioblastoma cells triggers activation of caspases and leads to increased apoptotic cell death. Our data suggest that aberrantly expressed miR-21 may contribute to the malignant phenotype by blocking expression of critical apoptosis-related genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease.

              Nonalcoholic steatohepatitis is a poorly understood and hitherto unnamed liver disease that histologically mimics alcoholic hepatitis and that also may progress to cirrhosis. Described here are findings in 20 patients with nonalcoholic steatohepatitis of unknown cause. The biopsy specimens were characterized by the presence of striking fatty changes with evidence of lobular hepatitis, focal necroses with mixed inflammatory infiltrates, and, in most instances, Mallory bodies; Evidence of fibrosis was found in most specimens, and cirrhosis was diagnosed in biopsy tissue from three patients. The disease was more common in women. Most patients were moderately obese, and many had obesity-associated diseases, such as diabetes mellitus and cholelithiasis. Presence of hepatomegaly and mild abnormalities of liver function were common clinical findings. Currently, we know of no effective therapy.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                04 December 2015
                December 2015
                : 4
                : 12
                : 1977-1988
                Affiliations
                Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, 150 S. Huntington Ave., Room 6A-46, Boston, MA 02130, USA; gbaffy@ 123456bwh.harvard.edu ; Tel.: +1-857-364-4327; Fax: +1-857-364-4179
                Article
                jcm-04-01953
                10.3390/jcm4121953
                4693153
                26690233
                ce13f82d-709f-4339-85b4-3c3d1d32d17b
                © 2015 by the author; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 October 2015
                : 27 November 2015
                Categories
                Review

                nonalcoholic fatty liver disease,steatohepatitis,hepatocellular carcinoma,mirna,circulating mirna,antagomir,differential expression,transcriptome,predicted target genes

                Comments

                Comment on this article