23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a Novel Di-D-Fructofuranose 1,2’:2,3’ Dianhydride (DFA III) Hydrolysis Enzyme from Arthrobacter aurescens SK8.001

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previously, a di-D-fructofuranose 1,2’:2,3’ dianhydride (DFA III)-producing strain, Arthrobacter aurescens SK8.001, was isolated from soil, and the gene cloning and characterization of the DFA III-forming enzyme was studied. In this study, a DFA III hydrolysis enzyme (DFA IIIase)-encoding gene was obtained from the same strain, and the DFA IIIase gene was cloned and expressed in Escherichia coli. The SDS-PAGE and gel filtration results indicated that the purified enzyme was a homotrimer holoenzyme of 145 kDa composed of subunits of 49 kDa. The enzyme displayed the highest catalytic activity for DFA III at pH 5.5 and 55°C, with specific activity of 232 U mg -1. K m and V max for DFA III were 30.7 ± 4.3 mM and 1.2 ± 0.1 mM min -1, respectively. Interestingly, DFA III-forming enzymes and DFA IIIases are highly homologous in amino acid sequence. The molecular modeling and docking of DFA IIIase were first studied, using DFA III-forming enzyme from Bacillus sp. snu-7 as a template. It was suggested that A. aurescens DFA IIIase shared a similar three-dimensional structure with the reported DFA III-forming enzyme from Bacillus sp. snu-7. Furthermore, their catalytic sites may occupy the same position on the proteins. Based on molecular docking analysis and site-directed mutagenesis, it was shown that D207 and E218 were two potential critical residues for the catalysis of A. aurescens DFA IIIase.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The SWISS-MODEL Repository and associated resources

          SWISS-MODEL Repository (http://swissmodel.expasy.org/repository/) is a database of 3D protein structure models generated by the SWISS-MODEL homology-modelling pipeline. The aim of the SWISS-MODEL Repository is to provide access to an up-to-date collection of annotated 3D protein models generated by automated homology modelling for all sequences in Swiss-Prot and for relevant models organisms. Regular updates ensure that target coverage is complete, that models are built using the most recent sequence and template structure databases, and that improvements in the underlying modelling pipeline are fully utilised. As of September 2008, the database contains 3.4 million entries for 2.7 million different protein sequences from the UniProt database. SWISS-MODEL Repository allows the users to assess the quality of the models in the database, search for alternative template structures, and to build models interactively via SWISS-MODEL Workspace (http://swissmodel.expasy.org/workspace/). Annotation of models with functional information and cross-linking with other databases such as the Protein Model Portal (http://www.proteinmodelportal.org) of the PSI Structural Genomics Knowledge Base facilitates the navigation between protein sequence and structure resources.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification.

            Glycosylation is a key mechanism for orchestrating the bioactivity, metabolism and location of small molecules in living cells. In plants, a large multigene family of glycosyltransferases is involved in these processes, conjugating hormones, secondary metabolites, biotic and abiotic environmental toxins, to impact directly on cellular homeostasis. The red grape enzyme UDP-glucose:flavonoid 3-O-glycosyltransferase (VvGT1) is responsible for the formation of anthocyanins, the health-promoting compounds which, in planta, function as colourants determining flower and fruit colour and are precursors for the formation of pigmented polymers in red wine. We show that VvGT1 is active, in vitro, on a range of flavonoids. VvGT1 is somewhat promiscuous with respect to donor sugar specificity as dissected through full kinetics on a panel of nine sugar donors. The three-dimensional structure of VvGT1 has also been determined, both in its 'Michaelis' complex with a UDP-glucose-derived donor and the acceptor kaempferol and in complex with UDP and quercetin. These structures, in tandem with kinetic dissection of activity, provide the foundation for understanding the mechanism of these enzymes in small molecule homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula.

              Glycosylation is a ubiquitous reaction controlling the bioactivity and storage of plant natural products. Glycosylation of small molecules is catalyzed by a superfamily of glycosyltransferases (GTs) in most plant species studied to date. We present crystal structures of the UDP flavonoid/triterpene GT UGT71G1 from Medicago truncatula bound to UDP or UDP-glucose. The structures reveal the key residues involved in the recognition of donor substrate and, by comparison with other GT structures, suggest His-22 as the catalytic base and Asp-121 as a key residue that may assist deprotonation of the acceptor by forming an electron transfer chain with the catalytic base. Mutagenesis confirmed the roles of these key residues in donor substrate binding and enzyme activity. Our results provide an initial structural basis for understanding the complex substrate specificity and regiospecificity underlying the glycosylation of plant natural products and other small molecules. This information will direct future attempts to engineer bioactive compounds in crop plants to improve plant, animal, and human health and to facilitate the rational design of GTs to improve the storage and stability of novel engineered bioactive compounds.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                10 November 2015
                2015
                : 10
                : 11
                : e0142640
                Affiliations
                [1 ]State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
                [2 ]Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
                [3 ]University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599, Stuttgart, Germany
                University of Edinburgh, UNITED KINGDOM
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SY XW TZ TS LF BJ WM. Performed the experiments: SY XW. Analyzed the data: SY XW LF BJ WM. Contributed reagents/materials/analysis tools: SY XW BJ WM. Wrote the paper: SY WM.

                Article
                PONE-D-15-32650
                10.1371/journal.pone.0142640
                4640833
                26555784
                ce18dab8-837f-483b-8aff-27049f03c009
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 24 July 2015
                : 23 October 2015
                Page count
                Figures: 7, Tables: 3, Pages: 18
                Funding
                This work was supported by the NSFC Project (Nos. 21276001 and 31371788), the Fundamental Research Funds for the Central Universities (No. JUSRP51304A), and the Support Project of Jiangsu Province (BK20130001).
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article