3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mannosylerythritol lipids ameliorate ultraviolet A-induced aquaporin-3 downregulation by suppressing c-Jun N-terminal kinase phosphorylation in cultured human keratinocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mannosylerythritol lipids (MELs) are glycolipids and have several pharmacological efficacies. MELs also show skin-moisturizing efficacy through a yet-unknown underlying mechanism. Aquaporin-3 (AQP3) is a membrane protein that contributes to the water homeostasis of the epidermis, and decreased AQP3 expression following ultraviolet (UV)-irradiation of the skin is associated with reduced skin moisture. No previous study has examined whether the skin-moisturizing effect of MELs might act through the modulation of AQP3 expression. Here, we report for the first time that MELs ameliorate the UVA-induced downregulation of AQP3 in cultured human epidermal keratinocytes (HaCaT keratinocytes). Our results revealed that UVA irradiation decreases AQP3 expression at the protein and messenger RNA (mRNA) levels, but that MEL treatment significantly ameliorated these effects. Our mitogen-activated protein kinase inhibitor analysis revealed that phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, mediates UVA-induced AQP3 downregulation, and that MEL treatment significantly suppressed the UVA-induced phosphorylation of JNK. To explore a possible mechanism, we tested whether MELs could regulate the expression of peroxidase proliferator-activated receptor gamma (PPAR-γ), which acts as a potent transcription factor for AQP3 expression. Interestingly, UVA irradiation significantly inhibited the mRNA expression of PPAR-γ in HaCaT keratinocytes, whereas a JNK inhibitor and MELs significantly rescued this effect. Taken together, these findings suggest that MELs ameliorate UVA-induced AQP3 downregulation in HaCaT keratinocytes by suppressing JNK activation to block the decrease of PPAR-γ. Collectively, our findings suggest that MELs can be used as a potential ingredient that modulates AQP3 expression to improve skin moisturization following UVA irradiation-induced damage.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Roles of aquaporin-3 in the epidermis.

          Aquaporin-3 (AQP3) is a membrane transporter of water and glycerol expressed in plasma membranes in the basal layer keratinocytes of epidermis in normal skin. AQP3 expression in human skin is increased in response to skin stress in diseases such as atopic eczema, to various agents such as retinoic acid, and in skin carcinomas. AQP3-knockout mice have reduced stratum corneum water content and elasticity compared with wild-type mice, as well as impaired wound healing and epidermal biosynthesis. Reduced AQP3-dependent glycerol transport in AQP3-deficient epidermis appears to be responsible for these phenotype findings, as evidenced by reduced glycerol content in epidermis and stratum corneum in AQP3-knockout mice, and correction of the phenotype abnormalities by glycerol replacement. Recent data implicate AQP3 as an important determinant in epidermal proliferation and skin tumorigenesis, in which AQP3-knockout mice are resistant to tumor formation by a mechanism that may involve reduced cell glycerol content and ATP energy for biosynthesis. AQP3 is thus a key player in epidermal biology and a potential target for drug development.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts.

              Mannosylerythritol lipids (MELs) are biosurfactants known for their versatile interfacial and biochemical properties. To broaden their application in cosmetics, we investigated the antioxidant properties of different MEL derivatives (MEL-A, -B, and -C) by using a 1,1-diphenyl-2-picryl hydrazine (DPPH) free-radical- and superoxide anion-scavenging assay. All MEL derivatives tested showed antioxidant activity in vitro, but at lower levels than those of arbutin. Of the MELs, MEL-C, which is produced from soybean oil by Pseudozyma hubeiensis, showed the highest rates of DPPH radical scavenging (50.3% at 10 mg/mL) and superoxide anion scavenging (>50% at 1 mg/mL). The antioxidant property of MEL-C was further examined using cultured human skin fibroblasts (NB1RGB cells) under H(2)O(2) induced oxidative stress. Surprisingly, MEL-C had a higher protective activity against oxidative stress than arbutin did: 10 µg/mL of MEL-C and arbutin had protective activities of 30.3% and 13%, respectively. Expression of an oxidative stress marker, cyclooxygenase-2, in these cells was repressed by treatment with MEL-C as well as by arbutin. MEL-C was thus confirmed to have antioxidant and protective effects in cells, and we suggest that MELs have potential as anti-aging skin care ingredients.
                Bookmark

                Author and article information

                Journal
                Korean J Physiol Pharmacol
                Korean J. Physiol. Pharmacol
                KJPP
                The Korean Journal of Physiology & Pharmacology : Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology
                The Korean Physiological Society and The Korean Society of Pharmacology
                1226-4512
                2093-3827
                March 2019
                15 February 2019
                : 23
                : 2
                : 113-120
                Affiliations
                [1 ]R&D Center, Amorepacific Corporation, Yongin 17074, Korea.
                [2 ]Department of Beauty and Cosmetic Science, Eulji University, Seongnam 13135, Korea.
                [3 ]Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
                Author notes
                Correspondence: Chang Seok Lee. cslee2010@ 123456eulji.ac.kr
                Correspondence: Dae-Yong Kim. daeyong@ 123456snu.ac.kr
                Article
                10.4196/kjpp.2019.23.2.113
                6384198
                30820155
                ce21f98b-54b0-4314-a60d-811f1b87c66d
                Copyright © 2019 The Korean Physiological Society and The Korean Society of Pharmacology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 October 2018
                : 17 December 2018
                : 24 December 2018
                Funding
                Funded by: National Research Foundation of Korea, CrossRef https://doi.org/10.13039/501100003725;
                Award ID: 2018R1D1A1B07049402
                Categories
                Original Article

                aquaporin-3,jnk mitogen-activated protein kinases,mannosylerythritol lipid,ppar gamma,ultraviolet

                Comments

                Comment on this article