8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          A distance-based framework for measuring functional diversity from multiple traits

          A new framework for measuring functional diversity (FD) from multiple traits has recently been proposed. This framework was mostly limited to quantitative traits without missing values and to situations in which there are more species than traits, although the authors had suggested a way to extend their framework to other trait types. The main purpose of this note is to further develop this suggestion. We describe a highly flexible distance-based framework to measure different facets of FD in multidimensional trait space from any distance or dissimilarity measure, any number of traits, and from different trait types (i.e., quantitative, semi-quantitative, and qualitative). This new approach allows for missing trait values and the weighting of individual traits. We also present a new multidimensional FD index, called functional dispersion (FDis), which is closely related to Rao's quadratic entropy. FDis is the multivariate analogue of the weighted mean absolute deviation (MAD), in which the weights are species relative abundances. For unweighted presence-absence data, FDis can be used for a formal statistical test of differences in FD. We provide the "FD" R language package to easily implement our distance-based FD framework.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional traits and niche-based tree community assembly in an Amazonian forest.

            It is debated whether species-level differences in ecological strategy, which play a key role in much of coexistence theory, are important in structuring highly diverse communities. We examined the co-occurrence patterns of over 1100 tree species in a 25-hectare Amazonian forest plot in relation to field-measured functional traits. Using a null model approach, we show that co-occurring trees are often less ecologically similar than a niche-free (neutral) model predicts. Furthermore, we find evidence for processes that simultaneously drive convergence and divergence in key aspects of plant strategy, suggesting that at least two distinct niche-based processes are occurring. Our results show that strategy differentiation among species contributes to the maintenance of diversity in one of the most diverse tropical forests in the world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Convergence, adaptation, and constraint.

              Convergent evolution of similar phenotypic features in similar environmental contexts has long been taken as evidence of adaptation. Nonetheless, recent conceptual and empirical developments in many fields have led to a proliferation of ideas about the relationship between convergence and adaptation. Despite criticism from some systematically minded biologists, I reaffirm that convergence in taxa occupying similar selective environments often is the result of natural selection. However, convergent evolution of a trait in a particular environment can occur for reasons other than selection on that trait in that environment, and species can respond to similar selective pressures by evolving nonconvergent adaptations. For these reasons, studies of convergence should be coupled with other methods-such as direct measurements of selection or investigations of the functional correlates of trait evolution-to test hypotheses of adaptation. The independent acquisition of similar phenotypes by the same genetic or developmental pathway has been suggested as evidence of constraints on adaptation, a view widely repeated as genomic studies have documented phenotypic convergence resulting from change in the same genes, sometimes even by the same mutation. Contrary to some claims, convergence by changes in the same genes is not necessarily evidence of constraint, but rather suggests hypotheses that can test the relative roles of constraint and selection in directing phenotypic evolution. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
                Bookmark

                Author and article information

                Contributors
                Journal
                Functional Ecology
                Funct Ecol
                Wiley
                0269-8463
                1365-2435
                May 2020
                January 31 2020
                May 2020
                : 34
                : 5
                : 1064-1077
                Affiliations
                [1 ]Molecular Ecology Group (MEG) IRSA—Water Research Institute National Research Council Verbania Pallanza Italy
                [2 ]Laboratory for Integrative Biodiversity Research (LIBRe) Finnish Museum of Natural History (LUOMUS) University of Helsinki Helsinki Finland
                [3 ]Department of Life Sciences and Systems Biology University of Turin Turin Italy
                [4 ]Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute University of Barcelona Barcelona Spain
                [5 ]Department of Biology Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
                Article
                10.1111/1365-2435.13527
                ce258fa6-8f4b-4e95-bcf5-50b353374625
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article