Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A sisterly dispute

      , ,

      Nature

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: not found

          PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating.

          A variety of probabilistic models describing the evolution of DNA or protein sequences have been proposed for phylogenetic reconstruction or for molecular dating. However, there still lacks a common implementation allowing one to freely combine these independent features, so as to test their ability to jointly improve phylogenetic and dating accuracy. We propose a software package, PhyloBayes 3, which can be used for conducting Bayesian phylogenetic reconstruction and molecular dating analyses, using a large variety of amino acid replacement and nucleotide substitution models, including empirical mixtures or non-parametric models, as well as alternative clock relaxation processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenomics revives traditional views on deep animal relationships.

            The origin of many of the defining features of animal body plans, such as symmetry, nervous system, and the mesoderm, remains shrouded in mystery because of major uncertainty regarding the emergence order of the early branching taxa: the sponge groups, ctenophores, placozoans, cnidarians, and bilaterians. The "phylogenomic" approach [1] has recently provided a robust picture for intrabilaterian relationships [2, 3] but not yet for more early branching metazoan clades. We have assembled a comprehensive 128 gene data set including newly generated sequence data from ctenophores, cnidarians, and all four main sponge groups. The resulting phylogeny yields two significant conclusions reviving old views that have been challenged in the molecular era: (1) that the sponges (Porifera) are monophyletic and not paraphyletic as repeatedly proposed [4-9], thus undermining the idea that ancestral metazoans had a sponge-like body plan; (2) that the most likely position for the ctenophores is together with the cnidarians in a "coelenterate" clade. The Porifera and the Placozoa branch basally with respect to a moderately supported "eumetazoan" clade containing the three taxa with nervous system and muscle cells (Cnidaria, Ctenophora, and Bilateria). This new phylogeny provides a stimulating framework for exploring the important changes that shaped the body plans of the early diverging phyla.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution.

              An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                January 2016
                January 20 2016
                January 2016
                : 529
                : 7586
                : 286-287
                Article
                10.1038/529286a
                26791714
                © 2016

                http://www.springer.com/tdm

                Comments

                Comment on this article