7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The human tryptophan hydroxylase gene. An unusual splicing complexity in the 5'-untranslated region.

      The Journal of Biological Chemistry
      Animals, Base Sequence, Cloning, Molecular, DNA, Complementary, Exons, Humans, Introns, Molecular Sequence Data, Phylogeny, Polymerase Chain Reaction, Protein Biosynthesis, RNA Splicing, RNA, Messenger, genetics, metabolism, Rabbits, Sequence Homology, Nucleic Acid, Tryptophan Hydroxylase

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report the isolation and the organization of the gene encoding human tryptophan hydroxylase (TPH) and an analysis of the corresponding mRNAs. The gene spans a region of 29 kilobases, which contains at least 11 exons and a variably spliced 5'-untranslated region (5'-UTR). The sequence of the coding region and the majority of the positions of the intron-exon boundaries of human TPH gene are very similar to those encoding human tyrosine hydroxylase and phenylalanine hydroxylase, the other members of the aromatic amino acid hydroxylase family. Phylogenetic analysis evidences the early divergence and the independent evolution of the three hydroxylase types. TPH cDNA cloning and anchored polymerase chain reaction revealed a diversity of the TPH mRNA, which is restricted to the 5'-UTR. Four TPH mRNA species were detected by Northern blot with pineal gland and carcinoid tumor RNAs. These messengers are transcribed from a single transcriptional initiation site, and their diversity results from differential splicing of three intron-like regions and of three exons located in the 5'-UTR. Analysis by S1 nuclease protection revealed that the intron-like regions in the 5'-UTR are mostly unspliced and that TPH mRNA species where the three intron-like regions are eliminated are present at low level in pineal gland and not detectable in carcinoid tumors.

          Related collections

          Author and article information

          Comments

          Comment on this article