4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SSREnricher: a computational approach for large-scale identification of polymorphic microsatellites based on comparative transcriptome analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microsatellite (SSR) markers are the most popular markers for genetic analyses and molecular selective breeding in plants and animals. However, the currently available methods to develop SSRs are relatively time-consuming and expensive. One of the most factors is low frequency of polymorphic SSRs. In this study, we developed a software, SSREnricher, which composes of six core analysis procedures, including SSR mining, sequence clustering, sequence modification, enrichment containing polymorphic SSR sequences, false-positive removal and results output and multiple sequence alignment. After running of transcriptome sequences on this software, a mass of polymorphic SSRs can be identified. The validation experiments showed almost all markers (>90%) that were identified by the SSREnricher as putative polymorphic markers were indeed polymorphic. The frequency of polymorphic SSRs identified by SSREnricher was significantly higher ( P < 0.05) than that of traditional and HTS approaches. The software package is publicly accessible on GitHub ( https://github.com/byemaxx/SSREnricher).

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).

          A software tool was developed for the identification of simple sequence repeats (SSRs) in a barley ( Hordeum vulgare L.) EST (expressed sequence tag) database comprising 24,595 sequences. In total, 1,856 SSR-containing sequences were identified. Trimeric SSR repeat motifs appeared to be the most abundant type. A subset of 311 primer pairs flanking SSR loci have been used for screening polymorphisms among six barley cultivars, being parents of three mapping populations. As a result, 76 EST-derived SSR-markers were integrated into a barley genetic consensus map. A correlation between polymorphism and the number of repeats was observed for SSRs built of dimeric up to tetrameric units. 3'-ESTs yielded a higher portion of polymorphic SSRs (64%) than 5'-ESTs did. The estimated PIC (polymorphic information content) value was 0.45 +/- 0.03. Approximately 80% of the SSR-markers amplified DNA fragments in Hordeum bulbosum, followed by rye, wheat (both about 60%) and rice (40%). A subset of 38 EST-derived SSR-markers comprising 114 alleles were used to investigate genetic diversity among 54 barley cultivars. In accordance with a previous, RFLP-based, study, spring and winter cultivars, as well as two- and six-rowed barleys, formed separate clades upon PCoA analysis. The results show that: (1) with the software tool developed, EST databases can be efficiently exploited for the development of cDNA-SSRs, (2) EST-derived SSRs are significantly less polymorphic than those derived from genomic regions, (3) a considerable portion of the developed SSRs can be transferred to related species, and (4) compared to RFLP-markers, cDNA-SSRs yield similar patterns of genetic diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Repeat instability: mechanisms of dynamic mutations.

            Disease-causing repeat instability is an important and unique form of mutation that is linked to more than 40 neurological, neurodegenerative and neuromuscular disorders. DNA repeat expansion mutations are dynamic and ongoing within tissues and across generations. The patterns of inherited and tissue-specific instability are determined by both gene-specific cis-elements and trans-acting DNA metabolic proteins. Repeat instability probably involves the formation of unusual DNA structures during DNA replication, repair and recombination. Experimental advances towards explaining the mechanisms of repeat instability have broadened our understanding of this mutational process. They have revealed surprising ways in which metabolic pathways can drive or protect from repeat instability.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Microsatellite markers: an overview of the recent progress in plants

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                2 July 2020
                2020
                : 8
                : e9372
                Affiliations
                College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, Sichuan, China
                Author information
                http://orcid.org/0000-0002-0871-9840
                Article
                9372
                10.7717/peerj.9372
                7335497
                ce45a683-64f5-482e-95eb-09c3cacf72cc
                © 2020 Luo et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 24 December 2019
                : 27 May 2020
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 41706171
                Funded by: 13th Five-Year Aquaculture-Breeding Project
                Award ID: 2016NYZ0047
                This study was funded by the National Natural Science Foundation of China (No. 41706171) and the 13th five-year aquaculture-breeding project of Sichuan province (No. 2016NYZ0047), China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Bioinformatics
                Evolutionary Studies
                Genomics
                Data Mining and Machine Learning
                Data Science

                microsatellites,simple sequence repeats,polymorphic,comparative transcriptome analysis,sequence alignment

                Comments

                Comment on this article