7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Neuroglial Crosstalk and Synaptic Plasticity-Mediated Central Sensitization in Acupuncture Analgesia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although pain is regarded as a global public health priority, analgesic therapy remains a significant challenge. Pain is a hypersensitivity state caused by peripheral and central sensitization, with the latter considered the culprit for chronic pain. This study summarizes the pathogenesis of central sensitization from the perspective of neuroglial crosstalk and synaptic plasticity and underlines the related analgesic mechanisms of acupuncture. Central sensitization is modulated by the neurotransmitters and neuropeptides involved in the ascending excitatory pathway and the descending pain modulatory system. Acupuncture analgesia is associated with downregulating glutamate in the ascending excitatory pathway and upregulating opioids, 𝛾-aminobutyric acid, norepinephrine, and 5-hydroxytryptamine in the descending pain modulatory system. Furthermore, it is increasingly appreciated that neurotransmitters, cytokines, and chemokines are implicated in neuroglial crosstalk and associated plasticity, thus contributing to central sensitization. Acupuncture produces its analgesic action by inhibiting cytokines, such as interleukin-1 β, interleukin-6, and tumor necrosis factor- α, and upregulating interleukin-10, as well as modulating chemokines and their receptors such as CX3CL1/CX3CR1, CXCL12/CXCR4, CCL2/CCR2, and CXCL1/CXCR2. These factors are regulated by acupuncture through the activation of multiple signaling pathways, including mitogen-activated protein kinase signaling (e.g., the p38, extracellular signal-regulated kinases, and c-Jun-N-terminal kinase pathways), which contribute to the activation of nociceptive neurons. However, the responses of chemokines to acupuncture vary among the types of pain models, acupuncture methods, and stimulation parameters. Thus, the exact mechanisms require future clarification. Taken together, inhibition of central sensitization modulated by neuroglial plasticity is central in acupuncture analgesia, providing a novel insight for the clinical application of acupuncture analgesia.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular and molecular mechanisms of pain.

          The nervous system detects and interprets a wide range of thermal and mechanical stimuli, as well as environmental and endogenous chemical irritants. When intense, these stimuli generate acute pain, and in the setting of persistent injury, both peripheral and central nervous system components of the pain transmission pathway exhibit tremendous plasticity, enhancing pain signals and producing hypersensitivity. When plasticity facilitates protective reflexes, it can be beneficial, but when the changes persist, a chronic pain condition may result. Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Central sensitization: implications for the diagnosis and treatment of pain.

            Nociceptor inputs can trigger a prolonged but reversible increase in the excitability and synaptic efficacy of neurons in central nociceptive pathways, the phenomenon of central sensitization. Central sensitization manifests as pain hypersensitivity, particularly dynamic tactile allodynia, secondary punctate or pressure hyperalgesia, aftersensations, and enhanced temporal summation. It can be readily and rapidly elicited in human volunteers by diverse experimental noxious conditioning stimuli to skin, muscles or viscera, and in addition to producing pain hypersensitivity, results in secondary changes in brain activity that can be detected by electrophysiological or imaging techniques. Studies in clinical cohorts reveal changes in pain sensitivity that have been interpreted as revealing an important contribution of central sensitization to the pain phenotype in patients with fibromyalgia, osteoarthritis, musculoskeletal disorders with generalized pain hypersensitivity, headache, temporomandibular joint disorders, dental pain, neuropathic pain, visceral pain hypersensitivity disorders and post-surgical pain. The comorbidity of those pain hypersensitivity syndromes that present in the absence of inflammation or a neural lesion, their similar pattern of clinical presentation and response to centrally acting analgesics, may reflect a commonality of central sensitization to their pathophysiology. An important question that still needs to be determined is whether there are individuals with a higher inherited propensity for developing central sensitization than others, and if so, whether this conveys an increased risk in both developing conditions with pain hypersensitivity, and their chronification. Diagnostic criteria to establish the presence of central sensitization in patients will greatly assist the phenotyping of patients for choosing treatments that produce analgesia by normalizing hyperexcitable central neural activity. We have certainly come a long way since the first discovery of activity-dependent synaptic plasticity in the spinal cord and the revelation that it occurs and produces pain hypersensitivity in patients. Nevertheless, discovering the genetic and environmental contributors to and objective biomarkers of central sensitization will be highly beneficial, as will additional treatment options to prevent or reduce this prevalent and promiscuous form of pain plasticity. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuronal plasticity: increasing the gain in pain.

              We describe those sensations that are unpleasant, intense, or distressing as painful. Pain is not homogeneous, however, and comprises three categories: physiological, inflammatory, and neuropathic pain. Multiple mechanisms contribute, each of which is subject to or an expression of neural plasticity-the capacity of neurons to change their function, chemical profile, or structure. Here, we develop a conceptual framework for the contribution of plasticity in primary sensory and dorsal horn neurons to the pathogenesis of pain, identifying distinct forms of plasticity, which we term activation, modulation, and modification, that by increasing gain, elicit pain hypersensitivity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neural Plast
                Neural Plast
                np
                Neural Plasticity
                Hindawi
                2090-5904
                1687-5443
                2021
                18 January 2021
                : 2021
                : 8881557
                Affiliations
                1Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
                2School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
                3National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
                4Suzuka University of Medical Science, Suzuka 5100293, Japan
                5School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
                Author notes

                Academic Editor: Zhen Zheng

                Author information
                https://orcid.org/0000-0002-3767-2658
                https://orcid.org/0000-0002-6244-7938
                https://orcid.org/0000-0003-2583-2359
                https://orcid.org/0000-0002-9955-0971
                https://orcid.org/0000-0003-2420-4764
                https://orcid.org/0000-0002-4961-3073
                https://orcid.org/0000-0002-0576-163X
                https://orcid.org/0000-0001-8112-9356
                Article
                10.1155/2021/8881557
                7834789
                33531894
                ce48ae95-34ab-4550-8d2b-e128b37f1b25
                Copyright © 2021 Zhongxi Lyu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 June 2020
                : 30 December 2020
                : 7 January 2021
                Funding
                Funded by: Natural Science Foundation of Tianjin City
                Award ID: 20JCQNJC00280
                Funded by: National Natural Science Foundation of China
                Award ID: 81873368
                Award ID: 81873369
                Award ID: 81704146
                Funded by: National Key R&D Program of China
                Award ID: 2019YFC1709003
                Categories
                Review Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article