7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reorganization of taxonomic, functional, and phylogenetic ant biodiversity after conversion to rubber plantation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Book: not found

          The Ants

          From the Arctic to South Africa - one finds them everywhere: Ants. Making up nearly 15% of the entire terrestrial animal biomass, ants are impressive not only in quantitative terms, they also fascinate by their highly organized and complex social system. Their caste system, the division of labor, the origin of altruistic behavior and the complex forms of chemical communication makes them the most interesting group of social organisms and the main subject for sociobiologists. Not least is their ecological importance: Ants are the premier soil turners, channelers of energy and dominatrices of the insect fauna. TOC:The importance of ants.- Classification and origins.- The colony life cycle.- Altruism and the origin of the worker caste.- Colony odor and kin recognition.- Queen numbers and domination.- Communication.- Caste and division of labor.- Social homeostasis and flexibility.- Foraging and territorial strategies.- The organization of species communities.- Symbioses among ant species.- Symbioses with other animals.- Interaction with plants.- The specialized predators.- The army ants.- The fungus growers.- The harvesters.- The weaver ants.- Collecting and culturing ants.- Glossary.- Bibliography.- Index.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Testing for phylogenetic signal in comparative data: behavioral traits are more labile.

            The primary rationale for the use of phylogenetically based statistical methods is that phylogenetic signal, the tendency for related species to resemble each other, is ubiquitous. Whether this assertion is true for a given trait in a given lineage is an empirical question, but general tools for detecting and quantifying phylogenetic signal are inadequately developed. We present new methods for continuous-valued characters that can be implemented with either phylogenetically independent contrasts or generalized least-squares models. First, a simple randomization procedure allows one to test the null hypothesis of no pattern of similarity among relatives. The test demonstrates correct Type I error rate at a nominal alpha = 0.05 and good power (0.8) for simulated datasets with 20 or more species. Second, we derive a descriptive statistic, K, which allows valid comparisons of the amount of phylogenetic signal across traits and trees. Third, we provide two biologically motivated branch-length transformations, one based on the Ornstein-Uhlenbeck (OU) model of stabilizing selection, the other based on a new model in which character evolution can accelerate or decelerate (ACDC) in rate (e.g., as may occur during or after an adaptive radiation). Maximum likelihood estimation of the OU (d) and ACDC (g) parameters can serve as tests for phylogenetic signal because an estimate of d or g near zero implies that a phylogeny with little hierarchical structure (a star) offers a good fit to the data. Transformations that improve the fit of a tree to comparative data will increase power to detect phylogenetic signal and may also be preferable for further comparative analyses, such as of correlated character evolution. Application of the methods to data from the literature revealed that, for trees with 20 or more species, 92% of traits exhibited significant phylogenetic signal (randomization test), including behavioral and ecological ones that are thought to be relatively evolutionarily malleable (e.g., highly adaptive) and/or subject to relatively strong environmental (nongenetic) effects or high levels of measurement error. Irrespective of sample size, most traits (but not body size, on average) showed less signal than expected given the topology, branch lengths, and a Brownian motion model of evolution (i.e., K was less than one), which may be attributed to adaptation and/or measurement error in the broad sense (including errors in estimates of phenotypes, branch lengths, and topology). Analysis of variance of log K for all 121 traits (from 35 trees) indicated that behavioral traits exhibit lower signal than body size, morphological, life-history, or physiological traits. In addition, physiological traits (corrected for body size) showed less signal than did body size itself. For trees with 20 or more species, the estimated OU (25% of traits) and/or ACDC (40%) transformation parameter differed significantly from both zero and unity, indicating that a hierarchical tree with less (or occasionally more) structure than the original better fit the data and so could be preferred for comparative analyses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional diversity: back to basics and looking forward.

              Functional diversity is a component of biodiversity that generally concerns the range of things that organisms do in communities and ecosystems. Here, we review how functional diversity can explain and predict the impact of organisms on ecosystems and thereby provide a mechanistic link between the two. Critical points in developing predictive measures of functional diversity are the choice of functional traits with which organisms are distinguished, how the diversity of that trait information is summarized into a measure of functional diversity, and that the measures of functional diversity are validated through quantitative analyses and experimental tests. There is a vast amount of trait information available for plant species and a substantial amount for animals. Choosing which traits to include in a particular measure of functional diversity will depend on the specific aims of a particular study. Quantitative methods for choosing traits and for assigning weighting to traits are being developed, but need much more work before we can be confident about trait choice. The number of ways of measuring functional diversity is growing rapidly. We divide them into four main groups. The first, the number of functional groups or types, has significant problems and researchers are more frequently using measures that do not require species to be grouped. Of these, some measure diversity by summarizing distances between species in trait space, some by estimating the size of the dendrogram required to describe the difference, and some include information about species' abundances. We show some new and important differences between these, as well as what they indicate about the responses of assemblages to loss of individuals. There is good experimental and analytical evidence that functional diversity can provide a link between organisms and ecosystems but greater validation of measures is required. We suggest that non-significant results have a range of alternate explanations that do not necessarily contradict positive effects of functional diversity. Finally, we suggest areas for development of techniques used to measure functional diversity, highlight some exciting questions that are being addressed using ideas about functional diversity, and suggest some directions for novel research.
                Bookmark

                Author and article information

                Journal
                Ecological Monographs
                Ecol Monogr
                Wiley
                00129615
                May 2016
                May 2016
                May 16 2016
                : 86
                : 2
                : 215-227
                Affiliations
                [1 ]Okinawa Institute of Science and Technology Graduate University; Okinawa 904-0495 Japan
                [2 ]School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
                [3 ]Committee on Evolutionary Biology; University of Chicago; Chicago Illinois 60637 USA
                [4 ]Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Kunming China
                Article
                10.1890/15-1464.1
                ce4b40ad-8aab-4756-821b-893927150c3b
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                http://creativecommons.org/licenses/by-nc/4.0/

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article