14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biosynthesis of polyhydroxyalkanoates containing hydroxyl group from glycolate in Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polyhydroxyalkanoates (PHAs) containing hydroxyl groups in a side chain were produced in recombinant Escherichia coli JM109 using glycolate as the sole carbon source. The propionate-CoA transferase ( pct) gene from Megasphaera elsdenii and the β-ketothiolase ( bktB) gene and phaCAB operon from Ralstonia eutropha H16 were introduced into E. coli JM109. A novel monomer containing a hydroxyl group, dihydroxybutyrate (DHBA), was the expected product of the condensation of glycolyl-CoA and acetyl-CoA by BktB. The recombinant strain produced a PHA containing 1 mol% DHBA. The incorporation of DHBA may have been restricted because the expression of phaAB1 competes for acetyl-CoA. The PHA containing DHBA units were evaluated regarding thermal properties, such as melting temperature, glass transition temperature and thermal degradation temperature. The current study demonstrates a potential use of PHA containing hydroxyl groups as renewable resources in biological materials.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

          <p>The first two editions of this manual have been mainstays of molecular biology for nearly twenty years, with an unrivalled reputation for reliability, accuracy, and clarity.<br>In this new edition, authors Joseph Sambrook and David Russell have completely updated the book, revising every protocol and adding a mass of new material, to broaden its scope and maintain its unbeatable value for studies in genetics, molecular cell biology, developmental biology, microbiology, neuroscience, and immunology.<br>Handsomely redesigned and presented in new bindings of proven durability, this three–volume work is essential for everyone using today’s biomolecular techniques.<br>The opening chapters describe essential techniques, some well–established, some new, that are used every day in the best laboratories for isolating, analyzing and cloning DNA molecules, both large and small.<br>These are followed by chapters on cDNA cloning and exon trapping, amplification of DNA, generation and use of nucleic acid probes, mutagenesis, and DNA sequencing.<br>The concluding chapters deal with methods to screen expression libraries, express cloned genes in both prokaryotes and eukaryotic cells, analyze transcripts and proteins, and detect protein–protein interactions.<br>The Appendix is a compendium of reagents, vectors, media, technical suppliers, kits, electronic resources and other essential information.<br>As in earlier editions, this is the only manual that explains how to achieve success in cloning and provides a wealth of information about why techniques work, how they were first developed, and how they have evolved. </p>
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry.

            Biopolyesters polyhydroxyalkanoates (PHA) produced by many bacteria have been investigated by microbiologists, molecular biologists, biochemists, chemical engineers, chemists, polymer experts and medical researchers. PHA applications as bioplastics, fine chemicals, implant biomaterials, medicines and biofuels have been developed and are covered in this critical review. Companies have been established or involved in PHA related R&D as well as large scale production. Recently, bacterial PHA synthesis has been found to be useful for improving robustness of industrial microorganisms and regulating bacterial metabolism, leading to yield improvement on some fermentation products. In addition, amphiphilic proteins related to PHA synthesis including PhaP, PhaZ or PhaC have been found to be useful for achieving protein purification and even specific drug targeting. It has become clear that PHA and its related technologies are forming an industrial value chain ranging from fermentation, materials, energy to medical fields (142 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic.

              Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.
                Bookmark

                Author and article information

                Contributors
                chayatip.insomphun@riken.jp
                Shingo.Kobayashi@kaneka.co.jp
                Tetsuya.Fujiki@kaneka.co.jp
                +81-48-462-1111 , keiji.numata@riken.jp
                Journal
                AMB Express
                AMB Express
                AMB Express
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2191-0855
                14 April 2016
                14 April 2016
                2016
                : 6
                : 29
                Affiliations
                [ ]Enzyme Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
                [ ]Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688 Japan
                Article
                200
                10.1186/s13568-016-0200-5
                4830785
                27075993
                ce4fe704-aa60-488f-b0ba-5aea04e94cd0
                © Insomphun et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 29 March 2016
                : 6 April 2016
                Funding
                Funded by: RIKEN Biomass Engineering Program
                Categories
                Original Article
                Custom metadata
                © The Author(s) 2016

                Biotechnology
                polyhydroxyalkanoates,hydroxyl group,escherichia coli,glycolate
                Biotechnology
                polyhydroxyalkanoates, hydroxyl group, escherichia coli, glycolate

                Comments

                Comment on this article