4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Aged rat hearts are not more susceptible to ischemia-reperfusion injury in vivo: role of glutathione

      , , ,
      Mechanisms of Ageing and Development
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current study tested the hypothesis that ischemia-reperfusion (I-R) can cause more severe myocardial dysfunction and oxidative damage in senescent rats than young adult rats. Male Fischer 344 rats at the age of 6 (adult) and 24 (old) months were subjected to an open-chest heart surgery and randomly assigned to one of the following treatments: ischemia only (I), with the occlusion of the main descending branch of the left coronary artery (LCA) for 30 min; I-R, with the release of LCA occlusion for 20 min; or sham (S) operation. Heart mechanical performance was monitored using a fluid-filled catheter inserted in the right carotid artery and advanced to the left ventricle. Ischemia caused similar reductions of left ventricle systolic pressure (LVSP) and contractility (+/-dP/dt) in adult and aged hearts. After I-R, adult hearts regained 82% (P<0.05) of the pre-ischemic LVSP, whereas the aged hearts regained 91% (P>0.05) of LVSP. There was no significant difference in the reduction of +/-dP/dt with I-R between adult and aged hearts. Old rats had lower pre-ischemic heart rate than adult rats, however, I-R caused no reduction of heart rate, and a smaller reduction of pressure-rate double product in the aged rats (10%, P>0.05) than the adult rats (23%, P<0.01). Aged rats demonstrated greater myocardial and plasma glutathione (GSH) concentrations prior to surgery, and maintained higher GSH levels and GSH:glutathione disulfide (GSSG) ratio with I-R. Aged hearts also had higher GSH peroxidase, GSH reductase and GSH sulfur-transferase activities than adult hearts, while I-R induced lipid peroxidation was similar. It is concluded that senescent hearts with intact circulatory and neural inputs are not more susceptible to I-R injury than adult hearts during myocardial I-R, partly because they have a greater GSH antioxidant protection.

          Related collections

          Author and article information

          Journal
          Mechanisms of Ageing and Development
          Mechanisms of Ageing and Development
          Elsevier BV
          00476374
          May 2001
          May 2001
          : 122
          : 6
          : 503-518
          Article
          10.1016/S0047-6374(00)00253-0
          11295168
          ce534d24-cc63-44be-aa13-1cb82e4fd1ad
          © 2001

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article