34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands

      research-article
      1 , , 1 , 1 , 1
      BMC Cancer
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          It is generally assumed that inflammatory bowel disease (IBD)-related carcinogenesis occurs as a result of chronic inflammation. We previously developed a novel colitis-related mouse colon carcinogenesis model initiated with azoxymethane (AOM) and followed by dextran sodium sulfate (DSS). In the present study we investigated whether a cyclooxygenase (COX)-2 inhibitor nimesulide and ligands for peroxisome proliferator-activated receptors (PPARs), troglitazone (a PPARγ ligand) and bezafibrate (a PPARα ligand) inhibit colitis-related colon carcinogenesis using our model to evaluate the efficacy of these drugs in prevention of IBD-related colon carcinogenesis.

          Methods

          Female CD-1 (ICR) mice were given a single intraperitoneal administration of AOM (10 mg/kg body weight) and followed by one-week oral exposure of 2% (w/v) DSS in drinking water, and then maintained on the basal diets mixed with or without nimesulide (0.04%, w/w), troglitazone (0.05%, w/w), and bezafibrate (0.05%, w/w) for 14 weeks. The inhibitory effects of dietary administration of these compounds were determined by histopathological and immunohistochemical analyses.

          Results

          Feeding with nimesulide and troglitazone significantly inhibited both the incidence and multiplicity of colonic adenocarcinoma induced by AOM/DSS in mice. Bezafibrate feeding significantly reduced the incidence of colonic adenocarcinoma, but did not significantly lower the multiplicity. Feeding with nimesulide and troglitazone decreased the proliferating cell nuclear antigen (PCNA)-labeling index and expression of β-catenin, COX-2, inducible nitric oxide synthase (iNOS) and nitrotyrosine. The treatments increased the apoptosis index in the colonic adenocarcinoma. Feeding with bezafibrate also affected these parameters except for β-catenin expression in the colonic malignancy.

          Conclusion

          Dietary administration of nimesulide, troglitazone and bezafibrate effectively suppressed the development of colonic epithelial malignancy induced by AOM/DSS in female ICR mice. The results suggest that COX-2 inhibitor and PPAR ligands could serve as an effective agent against colitis-related colon cancer development.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of c-MYC as a target of the APC pathway.

          The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.

            The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor family of transcription factors, a large and diverse group of proteins that mediate ligand-dependent transcriptional activation and repression. Expression of PPAR-gamma is an early and pivotal event in the differentiation of adipocytes. Several agents that promote differentiation of fibroblast lines into adipocytes have been shown to be PPAR-gamma agonists, including several prostanoids, of which 15-deoxy-delta-prostaglandin J2 is the most potent, as well as members of a new class of oral antidiabetic agents, the thiazolidinediones, and a variety of non-steroidal anti-inflammatory drugs (NSAIDs). Here we show that PPAR-gamma agonists suppress monocyte elaboration of inflammatory cytokines at agonist concentrations similar to those found to be effective for the promotion of adipogenesis. Inhibition of cytokine production may help to explain the incremental therapeutic benefit of NSAIDs observed in the treatment of rheumatoid arthritis at plasma drug concentrations substantially higher than are required to inhibit prostaglandin G/H synthase (cyclooxygenase).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The PPARalpha-leukotriene B4 pathway to inflammation control.

              Inflammation is a local immune response to 'foreign' molecules, infection and injury. Leukotriene B4, a potent chemotactic agent that initiates, coordinates, sustains and amplifies the inflammatory response, is shown to be an activating ligand for the transcription factor PPARalpha. Because PPARalpha regulates the oxidative degradation of fatty acids and their derivatives, like this lipid mediator, a feedback mechanism is proposed that controls the duration of an inflammatory response and the clearance of leukotriene B4 in the liver. Thus PPARalpha offers a new route to the development of anti- or pro-inflammatory reagents.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                2005
                16 May 2005
                : 5
                : 46
                Affiliations
                [1 ]Department of Oncologic Pathology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
                Article
                1471-2407-5-46
                10.1186/1471-2407-5-46
                1156872
                15892897
                ce57085a-92be-4ac4-a11b-243e795ea4fe
                Copyright © 2005 Kohno et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 January 2005
                : 16 May 2005
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article