Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insight on transformation pathways of nitrogen species and functional genes expression by targeted players involved in nitrogen cycle.

      Impact

      Science Impact, Ltd.

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dr Hui-Ping Chuang, based at the National Cheng Kung University in Taiwan, has spent many years studying the role of bacteria in the nitrogen cycle. She explains that nitrous oxide (N2O) is an important intermediate or by-product in the nitrogen cycle and is among the priority greenhouse gas to be mitigated. This priority comes as a result of two factors. First of all, is almost 300 times more effective in trapping heat than CO2 does, whereas its atmospheric lifetime can amount up to 150 years. In addition, the rate of nitrous oxide have been increased up to 16 per cent since the beginning of the industrial revolution. For this reason, Chuang believes that it is imperative to develop biological treatment systems that can reduce N2O. This project has already managed to identify four kinds of microbial cultivated systems that have been established for different characteristics of nitrogen complexes. Furthermore, the quantitative analysing platform with specific oligonucleotide primers/probes is now used for monitoring the targeted genes in various systems and regions. Therefore, Chuang aims at developing microbial databases for the transformation of nitrogenous species that can in turn underline the changes of microbial communities but also link this information to profile the water analysis of these systems. 'These sponge systems will be widely applied in the cultivation of microorganisms taken from different environments, and further clarify the roles involve in the nitrogen cycle,' she says. 'Finally, the pathways and functional enzymes for N2O oxidization will further be explored.' Microbes play the key roles in the nitrogen cycle and surrounding electron transformation in the different environments. Genus SyBrGreen-qPCR is the useful tool to absolutely quantify the targeted microbes; furthermore, multiplex TaqMan-qPCR shortens the analytic time for large amounts of DNA samples. Dynamics of functional microbes during nitrougenous or chlorinated compounds in combined with background indicators of in-situ biological treatment and remediation systems benefit to expect the bio-transformation potential and treatment strategy of contaminated environments.

          Related collections

          Author and article information

          Journal
          Impact
          impact
          Science Impact, Ltd.
          2398-7073
          November 26 2018
          November 26 2018
          : 2018
          : 8
          : 58-59
          Article
          10.21820/23987073.2018.8.58
          © 2018

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Earth & Environmental sciences, Medicine, Computer science, Agriculture, Engineering

          Comments

          Comment on this article