60
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Moving toward a precise nutrition: preferential loading of seeds with essential nutrients over non-essential toxic elements

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants and seeds are the main source of essential nutrients for humans and livestock. Many advances have recently been made in understanding the molecular mechanisms by which plants take up and accumulate micronutrients such as iron, zinc, copper and manganese. Some of these mechanisms, however, also facilitate the accumulation of non-essential toxic elements such as cadmium (Cd) and arsenic (As). In humans, Cd and As intake has been associated with multiple disorders including kidney failure, diabetes, cancer and mental health issues. Recent studies have shown that some transporters can discriminate between essential metals and non-essential elements. Furthermore, sequestration of non-essential elements in roots has been described in several plant species as a key process limiting the translocation of non-essential elements to aboveground edible tissues, including seeds. Increasing the concentration of bioavailable micronutrients (biofortification) in grains while lowering the accumulation of non-essential elements will likely require the concerted action of several transporters. This review discusses the most recent advances on mineral nutrition that could be used to preferentially enrich seeds with micronutrients and also illustrates how precision breeding and transport engineering could be used to enhance the nutritional value of crops by re-routing essential and non-essential elements to separate sink tissues (roots and seeds).

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Marker-assisted selection: an approach for precision plant breeding in the twenty-first century.

          DNA markers have enormous potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for diverse crops species have provided an abundance of DNA marker-trait associations. In this review, we present an overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops. We also consider reasons why MAS has had only a small impact on plant breeding so far and suggest ways in which the potential of MAS can be realized. Finally, we discuss reasons why the greater adoption of MAS in the future is inevitable, although the extent of its use will depend on available resources, especially for orphan crops, and may be delayed in less-developed countries. Achieving a substantial impact on crop improvement by MAS represents the great challenge for agricultural scientists in the next few decades.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice.

            Paddy rice (Oryza sativa) is able to accumulate high concentrations of Mn without showing toxicity; however, the molecular mechanisms underlying Mn uptake are unknown. Here, we report that a member of the Nramp (for the Natural Resistance-Associated Macrophage Protein) family, Nramp5, is involved in Mn uptake and subsequently the accumulation of high concentrations of Mn in rice. Nramp5 was constitutively expressed in the roots and encodes a plasma membrane-localized protein. Nramp5 was polarly localized at the distal side of both exodermis and endodermis cells. Knockout of Nramp5 resulted in a significant reduction in growth and grain yield, especially when grown at low Mn concentrations. This growth reduction could be partially rescued by supplying high concentrations of Mn but not by the addition of Fe. Mineral analysis showed that the concentration of Mn and Cd in both the roots and shoots was lower in the knockout line than in wild-type rice. A short-term uptake experiment revealed that the knockout line lost the ability to take up Mn and Cd. Taken together, Nramp5 is a major transporter of Mn and Cd and is responsible for the transport of Mn and Cd from the external solution to root cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.

              Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the external medium to the xylem. Transporters belonging to the NIP subfamily of aquaporins in rice are permeable to arsenite but not to arsenate. Mutation in OsNIP2;1 (Lsi1, a silicon influx transporter) significantly decreases arsenite uptake. Furthermore, in the rice mutants defective in the silicon efflux transporter Lsi2, arsenite transport to the xylem and accumulation in shoots and grain decreased greatly. Mutation in Lsi2 had a much greater impact on arsenic accumulation in shoots and grain in field-grown rice than Lsi1. Arsenite transport in rice roots therefore shares the same highly efficient pathway as silicon, which explains why rice is efficient in arsenic accumulation. Our results provide insight into the uptake mechanism of arsenite in rice and strategies for reducing arsenic accumulation in grain for enhanced food safety.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                20 February 2014
                2014
                : 5
                : 51
                Affiliations
                Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
                Author notes

                Edited by: Lorraine Elizabeth Williams, University of Southampton, UK

                Reviewed by: Agnieszka Sirko, Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Poland; Jian Feng Ma, Okayama University, Japan

                *Correspondence: David G. Mendoza-Cozatl, Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA e-mail: mendozacozatld@ 123456missouri.edu

                This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2014.00051
                3929903
                24600463
                ce676c04-c19b-49bf-825b-6fdbb178786f
                Copyright © 2014 Khan, Castro-Guerrero and Mendoza-Cozatl.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 December 2013
                : 03 February 2014
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 66, Pages: 7, Words: 0
                Categories
                Plant Science
                Mini Review Article

                Plant science & Botany
                food security,heavy metals,long distance transport,seed loading,mineral nutrition

                Comments

                Comment on this article