14
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extraordinary drilling capabilities of the tiny parasitoid Eupelmus messene Walker (Hymenoptera, Eupelmidae)

      , , ,
      Journal of Hymenoptera Research
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the course of evolution, animals and particularly insects, have developed efficient and complex mechanisms for survival. Biomimetics aims to find applications for these features of organisms (or organs) in industry, agriculture, and medicine. One of these features is the thin, flexible, and mobile insect ovipositor, which is also capable of carrying substances and drilling various substrates, usually of plant origin. Despite the well-studied structure of the ovipositor, the principles of its operation and real possibilities remain poorly understood. In our study, we first discovered an unusual behavioral pattern of oviposition of the female parasitoid Eupelmus messene Walker (Hymenoptera: Eupelmidae): she drilled with her ovipositor through the wall of a polystyrene Petri dish and laid her egg outside the dish. Due to the transparency of the plastic, we described the technique of ovipositor movement and studied its structure using scanning electron microscopy. Our research may contribute to developing minimally invasive guided probes and various other instruments.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Synthesis and properties of crosslinked recombinant pro-resilin.

          Resilin is a member of a family of elastic proteins that includes elastin, as well as gluten, gliadin, abductin and spider silks. Resilin is found in specialized regions of the cuticle of most insects, providing low stiffness, high strain and efficient energy storage; it is best known for its roles in insect flight and the remarkable jumping ability of fleas and spittle bugs. Previously, the Drosophila melanogaster CG15920 gene was tentatively identified as one encoding a resilin-like protein (pro-resilin). Here we report the cloning and expression of the first exon of the Drosophila CG15920 gene as a soluble protein in Escherichia coli. We show that this recombinant protein can be cast into a rubber-like biomaterial by rapid photochemical crosslinking. This observation validates the role of the putative elastic repeat motif in resilin function. The resilience (recovery after deformation) of crosslinked recombinant resilin was found to exceed that of unfilled synthetic polybutadiene, a high resilience rubber. We believe that our work will greatly facilitate structural investigations into the functional properties of resilin and shed light on more general aspects of the structure of elastomeric proteins. In addition, the ability to rapidly cast samples of this biomaterial may enable its use in situ for both industrial and biomedical applications.
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of ovipositor insertion and steering of a parasitic wasp

            Using slender probes to drill through solids is challenging, but desirable, due to minimal disturbances of the substrate. Parasitic wasps drill into solid substrates and lay eggs in hosts hidden within using slender probes and are therefore a good model for studying mechanical challenges associated with this process. We show that wasps are able to probe in any direction with respect to their body orientation and use two methods of insertion. One of the methods implies a minimal net pushing force during drilling. Steering was achieved by adjusting the asymmetry of the probe’s distal end. Knowledge on probing mechanisms of wasps is important for the understanding of the hymenopteran evolution and for the development of minimally invasive steerable probes. Drilling into solid substrates with slender beam-like structures is a mechanical challenge, but is regularly done by female parasitic wasps. The wasp inserts her ovipositor into solid substrates to deposit eggs in hosts, and even seems capable of steering the ovipositor while drilling. The ovipositor generally consists of three longitudinally connected valves that can slide along each other. Alternative valve movements have been hypothesized to be involved in ovipositor damage avoidance and steering during drilling. However, none of the hypotheses have been tested in vivo. We used 3D and 2D motion analysis to quantify the probing behavior of the fruit-fly parasitoid Diachasmimorpha longicaudata (Braconidae) at the levels of the ovipositor and its individual valves. We show that the wasps can steer and curve their ovipositors in any direction relative to their body axis. In a soft substrate, the ovipositors can be inserted without reciprocal motion of the valves. In a stiff substrate, such motions were always observed. This is in agreement with the damage avoidance hypothesis of insertion, as they presumably limit the overall net pushing force. Steering can be achieved by varying the asymmetry of the distal part of the ovipositor by protracting one valve set with respect to the other. Tip asymmetry is enhanced by curving of ventral elements in the absence of an opposing force, possibly due to pretension. Our findings deepen the knowledge of the functioning and evolution of the ovipositor in hymenopterans and may help to improve man-made steerable probes.
              • Record: found
              • Abstract: found
              • Article: not found

              STING: a soft-tissue intervention and neurosurgical guide to access deep brain lesions through curved trajectories.

              Current trends in surgical intervention favour a minimally invasive approach, in which complex procedures are performed through very small incisions. Specifically, in neurosurgery there is a need for minimally invasive keyhole access, which conflicts with the lack of manoeuvrability of conventional rigid instruments. In an attempt to address this shortcoming, the current state of progress is reported on a soft-tissue intervention and neurosurgical guide (STING) to access deep brain lesions through curved trajectories. The underlying mechanism of motion, based on the reciprocal movement of interlocked probe segments, is biologically inspired and was designed around the unique features of the ovipositor of certain parasitic wasps. Work to date has focused on probe development, low- and high-level control, and trajectory planning. These aspects are described, together with results on each aspect of the work, including biomimetic microtexturing of the probe surface. Progress is very encouraging and demonstrates that forward motion into soft tissue through a reciprocating mechanism is indeed viable and can be achieved through a suitable combination of microtexturing and microfabrication techniques.

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Hymenoptera Research
                JHR
                Pensoft Publishers
                1314-2607
                1070-9428
                August 31 2023
                August 31 2023
                : 96
                : 715-722
                Article
                10.3897/jhr.96.107786
                ce677cdb-206b-4fc3-b436-ef0e6693ccaa
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log