20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polymyxins are last-resort antibiotics used to treat highly resistant Gram-negative bacteria. There are increasing reports of polymyxin resistance emerging, raising concerns of a postantibiotic era. Polymyxin resistance is therefore a significant public health threat, but current phenotypic methods for detection are difficult and time-consuming to perform. There have been increasing efforts to use whole-genome sequencing for detection of antibiotic resistance, but this has been difficult to apply to polymyxin resistance because of its complex polygenic nature. The significance of our research is that we successfully applied machine learning methods to predict polymyxin resistance in Klebsiella pneumoniae clonal group 258, a common health care-associated and multidrug-resistant pathogen. Our findings highlight that machine learning can be successfully applied even in complex forms of antibiotic resistance and represent a significant contribution to the literature that could be used to predict resistance in other bacteria and to other antibiotics.

          ABSTRACT

          Polymyxins are used as treatments of last resort for Gram-negative bacterial infections. Their increased use has led to concerns about emerging polymyxin resistance (PR). Phenotypic polymyxin susceptibility testing is resource intensive and difficult to perform accurately. The complex polygenic nature of PR and our incomplete understanding of its genetic basis make it difficult to predict PR using detection of resistance determinants. We therefore applied machine learning (ML) to whole-genome sequencing data from >600 Klebsiella pneumoniae clonal group 258 (CG258) genomes to predict phenotypic PR. Using a reference-based representation of genomic data with ML outperformed a rule-based approach that detected variants in known PR genes (area under receiver-operator curve [AUROC], 0.894 versus 0.791, P = 0.006). We noted modest increases in performance by using a bacterial genome-wide association study to filter relevant genomic features and by integrating clinical data in the form of prior polymyxin exposure. Conversely, reference-free representation of genomic data as k-mers was associated with decreased performance (AUROC, 0.692 versus 0.894, P = 0.015). When ML models were interpreted to extract genomic features, six of seven known PR genes were correctly identified by models without prior programming and several genes involved in stress responses and maintenance of the cell membrane were identified as potential novel determinants of PR. These findings are a proof of concept that whole-genome sequencing data can accurately predict PR in K. pneumoniae CG258 and may be applicable to other forms of complex antimicrobial resistance.

          IMPORTANCE Polymyxins are last-resort antibiotics used to treat highly resistant Gram-negative bacteria. There are increasing reports of polymyxin resistance emerging, raising concerns of a postantibiotic era. Polymyxin resistance is therefore a significant public health threat, but current phenotypic methods for detection are difficult and time-consuming to perform. There have been increasing efforts to use whole-genome sequencing for detection of antibiotic resistance, but this has been difficult to apply to polymyxin resistance because of its complex polygenic nature. The significance of our research is that we successfully applied machine learning methods to predict polymyxin resistance in Klebsiella pneumoniae clonal group 258, a common health care-associated and multidrug-resistant pathogen. Our findings highlight that machine learning can be successfully applied even in complex forms of antibiotic resistance and represent a significant contribution to the literature that could be used to predict resistance in other bacteria and to other antibiotics.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Siderophore-based iron acquisition and pathogen control.

          High-affinity iron acquisition is mediated by siderophore-dependent pathways in the majority of pathogenic and nonpathogenic bacteria and fungi. Considerable progress has been made in characterizing and understanding mechanisms of siderophore synthesis, secretion, iron scavenging, and siderophore-delivered iron uptake and its release. The regulation of siderophore pathways reveals multilayer networks at the transcriptional and posttranscriptional levels. Due to the key role of many siderophores during virulence, coevolution led to sophisticated strategies of siderophore neutralization by mammals and (re)utilization by bacterial pathogens. Surprisingly, hosts also developed essential siderophore-based iron delivery and cell conversion pathways, which are of interest for diagnostic and therapeutic studies. In the last decades, natural and synthetic compounds have gained attention as potential therapeutics for iron-dependent treatment of infections and further diseases. Promising results for pathogen inhibition were obtained with various siderophore-antibiotic conjugates acting as "Trojan horse" toxins and siderophore pathway inhibitors. In this article, general aspects of siderophore-mediated iron acquisition, recent findings regarding iron-related pathogen-host interactions, and current strategies for iron-dependent pathogen control will be reviewed. Further concepts including the inhibition of novel siderophore pathway targets are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance.

            The management of infections due to Klebsiella pneumoniae has been complicated by the emergence of antimicrobial resistance, especially to carbapenems. Resistance to carbapenems in K. pneumoniae involves multiple mechanisms, including the production of carbapenemases (e.g., KPC, NDM, VIM, OXA-48-like), as well as alterations in outer membrane permeability mediated by the loss of porins and the upregulation of efflux systems. The latter two mechanisms are often combined with high levels of other types of β-lactamases (e.g., AmpC). K. pneumoniae sequence type 258 (ST258) emerged during the early to mid-2000s as an important human pathogen and has spread extensively throughout the world. ST258 comprises two distinct lineages, namely, clades I and II, and it seems that ST258 is a hybrid clone that was created by a large recombination event between ST11 and ST442. Incompatibility group F plasmids with blaKPC have contributed significantly to the success of ST258. The optimal treatment of infections due to carbapenemase-producing K. pneumoniae remains unknown. Some newer agents show promise for treating infections due to KPC producers; however, effective options for the treatment of NDM producers remain elusive.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of drug resistance: quinolone resistance.

              Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSystems
                mSystems
                msys
                msys
                mSystems
                mSystems
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5077
                26 May 2020
                May-Jun 2020
                : 5
                : 3
                : e00656-19
                Affiliations
                [a ]Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
                [b ]Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
                [c ]Department of Biomedical Informatics, Columbia University, New York, New York, USA
                [d ]Department of Computer Science, Columbia University, New York, New York, USA
                [e ]Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
                [f ]Microbiome & Pathogen Genomics Core, Columbia University Irving Medical Center, New York, New York, USA
                Agricultural Biotechnology Research Center
                Author notes
                Address correspondence to Nenad Macesic, nenad.macesic@ 123456monash.edu , or Anne-Catrin Uhlemann, au2110@ 123456columbia.edu .

                Citation Macesic N, Bear Don’t Walk OJ, IV, Pe’er I, Tatonetti NP, Peleg AY, Uhlemann A-C. 2020. Predicting phenotypic polymyxin resistance in Klebsiella pneumoniae through machine learning analysis of genomic data. mSystems 5:e00656-19. https://doi.org/10.1128/mSystems.00656-19.

                Author information
                https://orcid.org/0000-0002-9798-4768
                Article
                mSystems00656-19
                10.1128/mSystems.00656-19
                7253370
                32457240
                ce78ce17-5727-4ad5-bff1-efcddf8b92be
                Copyright © 2020 Macesic et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 9 October 2019
                : 1 May 2020
                Page count
                supplementary-material: 2, Figures: 3, Tables: 3, Equations: 0, References: 82, Pages: 16, Words: 11479
                Funding
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: AI116939
                Award Recipient :
                Funded by: Department of Health | National Health and Medical Research Council (NHMRC), https://doi.org/10.13039/501100000925;
                Award ID: APP1169514
                Award Recipient :
                Funded by: Department of Health | National Health and Medical Research Council (NHMRC), https://doi.org/10.13039/501100000925;
                Award ID: APP1117940
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), https://doi.org/10.13039/100000062;
                Award ID: 5U54DK104309-05
                Award Recipient :
                Categories
                Research Article
                Therapeutics and Prevention
                Custom metadata
                May/June 2020

                genotype,phenotype,prediction,antimicrobial resistance,machine learning

                Comments

                Comment on this article