40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Topographical functional connectivity patterns exist in the congenitally, prelingually deaf

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Congenital deafness causes large changes in the auditory cortex structure and function, such that without early childhood cochlear-implant, profoundly deaf children do not develop intact, high-level, auditory functions. But how is auditory cortex organization affected by congenital, prelingual, and long standing deafness? Does the large-scale topographical organization of the auditory cortex develop in people deaf from birth? And is it retained despite cross-modal plasticity? We identified, using fMRI, topographic tonotopy-based functional connectivity (FC) structure in humans in the core auditory cortex, its extending tonotopic gradients in the belt and even beyond that. These regions show similar FC structure in the congenitally deaf throughout the auditory cortex, including in the language areas. The topographic FC pattern can be identified reliably in the vast majority of the deaf, at the single subject level, despite the absence of hearing-aid use and poor oral language skills. These findings suggest that large-scale tonotopic-based FC does not require sensory experience to develop, and is retained despite life-long auditory deprivation and cross-modal plasticity. Furthermore, as the topographic FC is retained to varying degrees among the deaf subjects, it may serve to predict the potential for auditory rehabilitation using cochlear implants in individual subjects.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          A concordance correlation coefficient to evaluate reproducibility.

          L Lin (1989)
          A new reproducibility index is developed and studied. This index is the correlation between the two readings that fall on the 45 degree line through the origin. It is simple to use and possesses desirable properties. The statistical properties of this estimate can be satisfactorily evaluated using an inverse hyperbolic tangent transformation. A Monte Carlo experiment with 5,000 runs was performed to confirm the estimate's validity. An application using actual data is given.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Information-based functional brain mapping.

            The development of high-resolution neuroimaging and multielectrode electrophysiological recording provides neuroscientists with huge amounts of multivariate data. The complexity of the data creates a need for statistical summary, but the local averaging standardly applied to this end may obscure the effects of greatest neuroscientific interest. In neuroimaging, for example, brain mapping analysis has focused on the discovery of activation, i.e., of extended brain regions whose average activity changes across experimental conditions. Here we propose to ask a more general question of the data: Where in the brain does the activity pattern contain information about the experimental condition? To address this question, we propose scanning the imaged volume with a "searchlight," whose contents are analyzed multivariately at each location in the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regional differences in synaptogenesis in human cerebral cortex.

              The formation of synaptic contacts in human cerebral cortex was compared in two cortical regions: auditory cortex (Heschl's gyrus) and prefrontal cortex (middle frontal gyrus). Synapse formation in both cortical regions begins in the fetus, before conceptual age 27 weeks. Synaptic density increases more rapidly in auditory cortex, where the maximum is reached near postnatal age 3 months. Maximum synaptic density in middle frontal gyrus is not reached until after age 15 months. Synaptogenesis occurs concurrently with dendritic and axonal growth and with myelination of the subcortical white matter. A phase of net synapse elimination occurs late in childhood, earlier in auditory cortex, where it has ended by age 12 years, than in prefrontal cortex, where it extends to midadolescence. Synaptogenesis and synapse elimination in humans appear to be heterochronous in different cortical regions and, in that respect, appears to differ from the rhesus monkey, where they are concurrent. In other respects, including overproduction of synaptic contacts in infancy, persistence of high levels of synaptic density to late childhood or adolescence, the absolute values of maximum and adult synaptic density, and layer specific differences, findings in the human resemble those in rhesus monkeys.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                18 July 2016
                2016
                : 6
                : 29375
                Affiliations
                [1 ]Department of Psychology, Harvard University , Cambridge, MA 02138, USA
                [2 ]Faculty of Psychology and Educational Sciences, University of Coimbra , Coimbra 3001-802, Portugal
                [3 ]Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra , Coimbra 3001-802, Portugal
                [4 ]State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing 100875, China
                [5 ]Center for Mind/Brain Sciences, University of Trento , 38068, Rovereto, Italy
                Author notes
                Article
                srep29375
                10.1038/srep29375
                4947901
                27427158
                ce7ce8c8-4647-4c6b-83b8-656ecef96330
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 10 February 2016
                : 10 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article