46
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A role for CCL2 in both tumor progression and immunosurveillance

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The chemokine CCL2, which is best known for its chemotactic functions, is expressed not only by immune cells, but also by several types of malignant and stromal cells. CCL2 has been shown to exert both pro- and anti-tumor effects. However, recent results demonstrate a main role for CCL2 in tumor progression and metastasis, suggesting that this chemokine may constitute a therapeutic target for anticancer drugs. Mammary carcinoma models, including models of implantable, transgenic, and chemically-induced tumors, were employed in the setting of Ccl2 or Ccr2 knockout mice or CCL2 neutralization with a monoclonal antibody to further investigate the role of the CCL2/CCR2 signaling axis in tumor progression and metastatic spread. In our implantable tumor models, an anti-CCL2 monoclonal antibody inhibited the growth of primary malignant lesions in a biphasic manner and reduced the number of metastases. However, in Ccl2 −/− or Ccr2 −/− mice developing implanted or transgenic tumors, the number of pulmonary metastases was increased despite a reduction in the growth rate of primary neoplasms. Transgenic Mtag.Ccl2 −/− or Mtag.Ccr2 −/− mice also exhibited a significantly earlier of disease onset. In a chemical carcinogenesis model, anti-CCL2 monoclonal antibody inhibited the growth of established lesions but was ineffective in the tumor induction phase. In contrast to previous studies indicating a role for CCL2 in the establishment of metastases, we have demonstrated that the absence of CCL2/CCR2-signaling results in increased metastatic disease. Thus, the CCL2/CCR2 signaling axis appears to play a dual role in mediating early tumor immunosurveillance and sustaining the growth and progression of established neoplasms. Our findings support the use of anti-CCL2 therapies for the treatment of established breast carcinoma, although the complete abrogation of the CCL2 signaling cascade may also limit immunosurveillance and support metastatic spread.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Macrophages in Tumor Microenvironments and the Progression of Tumors

          Macrophages are widely distributed innate immune cells that play indispensable roles in the innate and adaptive immune response to pathogens and in-tissue homeostasis. Macrophages can be activated by a variety of stimuli and polarized to functionally different phenotypes. Two distinct subsets of macrophages have been proposed, including classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages express a series of proinflammatory cytokines, chemokines, and effector molecules, such as IL-12, IL-23, TNF- α , iNOS and MHCI/II. In contrast, M2 macrophages express a wide array of anti-inflammatory molecules, such as IL-10, TGF- β , and arginase1. In most tumors, the infiltrated macrophages are considered to be of the M2 phenotype, which provides an immunosuppressive microenvironment for tumor growth. Furthermore, tumor-associated macrophages secrete many cytokines, chemokines, and proteases, which promote tumor angiogenesis, growth, metastasis, and immunosuppression. Recently, it was also found that tumor-associated macrophages interact with cancer stem cells. This interaction leads to tumorigenesis, metastasis, and drug resistance. So mediating macrophage to resist tumors is considered to be potential therapy.
            • Record: found
            • Abstract: found
            • Article: not found

            Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer.

            Defective dendritic cell (DC) function caused by abnormal differentiation of these cells is an important mechanism of tumor escape from immune system control. Previously, we have demonstrated that the number and function of DC were dramatically reduced in cancer patients. This effect was closely associated with accumulation of immature cells (ImC) in peripheral blood. In this study, we investigated the nature and functional role of those ImC. Using flow cytometry, electron microscopy, colony formation assays, and cell differentiation in the presence of different cell growth factors, we have determined that the population of ImC is composed of a small percentage (<2%) of hemopoietic progenitor cells, with all other cells being represented by MHC class I-positive myeloid cells. About one-third of ImC were immature macrophages and DC, and the remaining cells were immature myeloid cells at earlier stages of differentiation. These cells were differentiated into mature DC in the presence of 1 microM all-trans-retinoic acid. Removal of ImC from DC fractions completely restored the ability of the DC to stimulate allogeneic T cells. In two different experimental systems ImC inhibited Ag-specific T cell responses. Thus, immature myeloid cells generated in large numbers in cancer patients are able to directly inhibit Ag-specific T cell responses. This may represent a new mechanism of immune suppression in cancer and may suggest a new approach to cancer treatment.
              • Record: found
              • Abstract: found
              • Article: not found

              Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer.

              Tumor cells stimulate the formation of stroma that secretes various mediators pivotal for tumor growth, including growth factors, cytokines, and proteases. However, little is known about the local regulation of these soluble mediators in the human tumor microenvironment. In this study, the local expression of cytokines, chemokines, and angiogenic factors was investigated in primary breast cancer tissue. The concentrations of interleukin (IL)-1, IL-4, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-alpha, IFN-gamma, IL-8, macrophage chemoattractant protein (MCP)-1, epithelial-neutrophil activating peptide-78, vascular endothelial growth factor, and thymidine phosphorylase (TP) were measured in 151 primary breast cancer extracts by ELISA. Tumor-associated macrophages (TAMs) were also examined by immunohistochemistry with anti-CD68 antibodies. The correlation between soluble mediators and the relationship between TAM count and soluble mediators were evaluated. MCP-1 concentration was correlated significantly with the level of vascular endothelial growth factor, TP, TNF-alpha, and IL-8, which are potent angiogenic factors. IL-4 concentration was correlated significantly with IL-8 and IL-10. On the other hand, an inverse association was observed between TP and IL-12. The level of MCP-1 was associated significantly with TAM accumulation. In the immunohistochemical analysis, MCP-1 expression was observed in both infiltrating macrophages and tumor cells. Prognostic analysis revealed that high expression of MCP-1, as well as of VEGF, was a significant indicator of early relapse. These findings indicate that interaction between the immune network system and angiogenesis is important for progression of human breast cancer, and that MCP-1 may play an important role in the regulation of angiogenesis and the immune system.

                Author and article information

                Journal
                Oncoimmunology
                Oncoimmunology
                ONCI
                Oncoimmunology
                Landes Bioscience
                2162-4011
                2162-402X
                01 July 2013
                01 July 2013
                01 July 2013
                : 2
                : 7
                : e25474
                Affiliations
                [1 ]Cancer Immunology Program; Peter MacCallum Cancer Centre; East Melbourne, VIC Australia
                [2 ]Sir Peter MacCallum Department of Oncology; The University of Melbourne; East Melbourne, VIC Australia
                [3 ]Janssen R&D LLC; Radnor, PA USA
                [4 ]Griffith Health Institute; Griffith University; Gold Coast, QLD Australia
                Author notes
                [* ]Correspondence to: Trina J Stewart, Email: t.stewart@ 123456griffith.edu.au
                Article
                2013ONCOIMM0139R 25474
                10.4161/onci.25474
                3782157
                24073384
                ce82fca1-7d93-484b-9ae5-2fe1dee8c611
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 29 May 2013
                : 18 June 2013
                : 19 June 2013
                Categories
                Original Research

                Immunology
                breast cancer,ccl2,ccr2,chemokine,immunosurveillance,metastases,monoclonal antibody therapy,tumor progression

                Comments

                Comment on this article

                Related Documents Log