21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterisation of Escherichia coli isolates from the blood of haematological adult patients with bacteraemia: translocation from gut to blood requires the cooperation of multiple virulence factors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the study was to investigate whether there are unique pathotypes of Escherichia coli capable of transmission from the gastrointestinal tract to the vascular bed. The study included E. coli strains isolated from clinical materials collected from 115 patients suffering from haematologic malignancies diagnosed with bacteraemia. The genotyping techniques established that 89 E. coli isolates from the blood had the same genotype as the E. coli from the patient’s bowel. The presence of 21 genes encoding virulence factors typical of various E. coli pathotypes and their relationship with the phylogenetic group was established. One-dimensional analysis showed that the focG gene occurred more frequently in the control bowel group, while the ampicillin-resistant afa/ dr E. coli were associated with bacteraemia. Blood isolates with the highest occurrence of virulence factors belonged to pathogenic group B2 and non-pathogenic group A. The co-occurrence of multiple genes encoding papC, sfa, usp and cnf1 virulence factors probably predisposes E. coli to translocation from the gastrointestinal tract to the vascular bed in the group of patients with haematologic malignancies. Based on clustering analysis, dominance of the most virulent strains assigned to the cluster with seven virulence factors encoded by the following genes, papC, sfaD/ E, cnf1, usp, agn43, hlyA and iutA, was found. The obtained results enforce the previously proposed concept of bowel–blood translocation and further expand our hypothesis by defining the unique virulence characteristics of E. coli isolates, which predispose them to bowel colonisation or translocation and bacteraemia in this group of patients.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease.

          It is not clear which species of bacteria may be involved in inflammatory bowel disease (IBD). One way of determining which bacteria might be likely candidates is to use culture-independent methods to identify microorganisms that are present in diseased tissues but not in controls. (1) To assess the diversity of microbial communities of biopsy tissue using culture-independent methods; (2) to culture the bacteria found in the tissues of patients with IBD but not in the controls; (3) to identify potential virulence factors associated with cultured bacteria. 84 biopsy specimens were collected from 15 controls, 13 patients with Crohn's disease (CD) and 19 patients with ulcerative colitis (UC) from a population-based case-control study. Ribosomal intergenic spacer analysis (RISA) was conducted to identify unique DNA bands in tissues from patients with CD and UC that did not appear in controls. RISA followed by DNA sequencing identified unique bands in biopsy specimens from patients with IBD that were classified as Escherichia coli. Targeted culture showed a significantly (p<0.05) higher number of Enterobacteriaceae in specimens from patients with IBD. The B2+D phylogenetic group, serine protease autotransporters (SPATE) and adherence factors were more likely to be associated with tissues from patients with UC and CD than with controls. The abundance of Enterobacteriaceae is 3-4 logs higher in tissues of patients with IBD and the B2+D phylogenetic groups are more prevalent in patients with UC and CD. The B2+D phylogenetic groups are associated with SPATE and adherence factors and may have a significant role in disease aetiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virulence factors in Escherichia coli urinary tract infection.

            Uropathogenic strains of Escherichia coli are characterized by the expression of distinctive bacterial properties, products, or structures referred to as virulence factors because they help the organism overcome host defenses and colonize or invade the urinary tract. Virulence factors of recognized importance in the pathogenesis of urinary tract infection (UTI) include adhesins (P fimbriae, certain other mannose-resistant adhesins, and type 1 fimbriae), the aerobactin system, hemolysin, K capsule, and resistance to serum killing. This review summarizes the virtual explosion of information regarding the epidemiology, biochemistry, mechanisms of action, and genetic basis of these urovirulence factors that has occurred in the past decade and identifies areas in need of further study. Virulence factor expression is more common among certain genetically related groups of E. coli which constitute virulent clones within the larger E. coli population. In general, the more virulence factors a strain expresses, the more severe an infection it is able to cause. Certain virulence factors specifically favor the development of pyelonephritis, others favor cystitis, and others favor asymptomatic bacteriuria. The currently defined virulence factors clearly contribute to the virulence of wild-type strains but are usually insufficient in themselves to transform an avirulent organism into a pathogen, demonstrating that other as-yet-undefined virulence properties await discovery. Virulence factor testing is a useful epidemiological and research tool but as yet has no defined clinical role. Immunological and biochemical anti-virulence factor interventions are effective in animal models of UTI and hold promise for the prevention of UTI in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains.

              Uropathogenic Escherichia coli (UPEC) strain 536 (O6:K15:H31) is one of the model organisms of extraintestinal pathogenic E. coli (ExPEC). To analyze this strain's genetic basis of urovirulence, we sequenced the entire genome and compared the data with the genome sequence of UPEC strain CFT073 (O6:K2:H1) and to the available genomes of nonpathogenic E. coli strain MG1655 (K-12) and enterohemorrhagic E. coli. The genome of strain 536 is approximately 292 kb smaller than that of strain CFT073. Genomic differences between both UPEC are mainly restricted to large pathogenicity islands, parts of which are unique to strain 536 or CFT073. Genome comparison underlines that repeated insertions and deletions in certain parts of the genome contribute to genome evolution. Furthermore, 427 and 432 genes are only present in strain 536 or in both UPEC, respectively. The majority of the latter genes is encoded within smaller horizontally acquired DNA regions scattered all over the genome. Several of these genes are involved in increasing the pathogens' fitness and adaptability. Analysis of virulence-associated traits expressed in the two UPEC O6 strains, together with genome comparison, demonstrate the marked genetic and phenotypic variability among UPEC. The ability to accumulate and express a variety of virulence-associated genes distinguishes ExPEC from many commensals and forms the basis for the individual virulence potential of ExPEC. Accordingly, instead of a common virulence mechanism, different ways exist among ExPEC to cause disease.
                Bookmark

                Author and article information

                Contributors
                kur@pg.gda.pl
                Journal
                Eur J Clin Microbiol Infect Dis
                Eur. J. Clin. Microbiol. Infect. Dis
                European Journal of Clinical Microbiology & Infectious Diseases
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0934-9723
                1435-4373
                6 February 2015
                6 February 2015
                2015
                : 34
                : 6
                : 1135-1143
                Affiliations
                [ ]Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
                [ ]Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Gdansk, Poland
                [ ]Laboratory of Clinical Microbiology, Gdańsk University of Medicine, Gdańsk, Poland
                [ ]Department of Obstetrics and Gynecology and Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN USA
                Article
                2331
                10.1007/s10096-015-2331-z
                4426128
                25655758
                ce880e78-6a95-471f-9ac8-ae30bcf71715
                © The Author(s) 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 8 December 2014
                : 19 January 2015
                Categories
                Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2015

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article