19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sensitivity of CryoSat-2 Arctic sea-ice volume trends on radar-waveform interpretation

      , , , ,
      The Cryosphere Discussions
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several studies have shown that there is considerable evidence that the Arctic sea-ice is thinning during the last decades. When combined with the observed rapid reduction of ice-covered area this leads to a decline in sea-ice volume. The only remote sensing technique capable of quantifying this ice volume decrease at global scale is satellite altimetry. In this context the CryoSat-2 satellite was launched in 2010 and is equipped with the Ku-band SAR radar altimeter SIRAL, which we use to derive sea-ice freeboard defined as the height of the ice surface above the local sea level. In the context of quantifying Arctic ice-volume decrease at global scale, the CryoSat-2 satellite was launched in 2010 and is equipped with the Ku-band SAR radar altimeter SIRAL, which we use to derive sea-ice freeboard defined as the height of the ice surface above the sea level. Accurate CryoSat-2 range measurements over open water and the ice surface in the order of centimeters are necessary to achieve the required accuracy of the freeboard to thickness conversion. Besides uncertainties of the actual sea-surface height and limited knowledge of ice and snow properties, the penetration of the radar signal into the snow cover and therefore the interpretation of radar echoes is crucial. This has consequences in the selection of retracker algorithms which are used to track the main scattering horizon and assign a range estimate to each CryoSat measurement. In this paper we apply a retracker algorithm with thresholds of 40%, 50% and 80% of the first maximum of radar echo power, spanning the range of values used in current literature. For the 40% threshold we assume that the main scattering horizon lies at a certain depth between the surface and snow-ice interface as verified through coincident CryoSat-2 and airborne laser altimetry measurements. This contrasts with the 50% and 80% thresholds where we assume the ice-snow interface as the main scattering horizon similar to other published studies. Using the selected retrackers we evaluate the uncertainties of trends in sea-ice freeboard and higher level products that arise from the choice of the retracker threshold only, independently from the uncertainties related to snow and ice properties. Our study shows that the choice of retracker thresholds does have a non-negligible impact on magnitude estimates of sea-ice freeboard, thickness and volume, but that the main trends in these parameters are less affected. Specifically we find declines of Arctic sea-ice volume of 9.7% (40% threshold), 10.9% (50% threshold) and 6.9% (80% threshold) between March 2011 and March 2013. In contrast to that we find increases in Arctic sea-ice volume of 27.88% (40% threshold), 25.71% (50% threshold) and 32.65% (80% threshold) between November 2011 and November 2013. Furthermore we obtain a significant increase of freeboard from March 2013 to November 2013 in the area for multi-seasonal sea-ice north of Greenland and the Canadian Archipelago. Since this is unlikely it gives rise to the assumption that applying different retracker thresholds depending on seasonal properties of the snow load is necessary in the future.

          Related collections

          Author and article information

          Journal
          The Cryosphere Discussions
          The Cryosphere Discuss.
          Copernicus GmbH
          1994-0440
          2014
          April 02 2014
          : 8
          : 2
          : 1831-1871
          Article
          10.5194/tcd-8-1831-2014
          ce8bbe54-ef1c-47f3-b39a-7dfb8955d851
          © 2014

          http://creativecommons.org/licenses/by/3.0/

          History

          Comments

          Comment on this article