11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          The increasing implementation of technological advances originally developed for video gaming (PlayStation, Xbox) is helping to progress livestock production so that it is both more efficient and more focused on the welfare of the animals. Such advances are necessary to ensure that innovations can emerge from applications using cameras, microphones and sensors to enhance the farmers’ eyes, ears and nose in everyday farming. This technology for remote monitoring of livestock, termed precision livestock farming, is the ability to automatically track individual livestock in real time. The goal of this review is to apprise swine veterinarians and their clientele on precision livestock farming with a general introduction to the technology available, a review of research and commercially available technology and the implications and opportunities for swine practitioners and farmers. Drawing from pig welfare criteria in the Common Swine Industry Audit, this review explains how these applications can be used to improve swine welfare within current pork production stakeholder expectations. Swine veterinarians and specialists, by virtue of their animal advocacy role, interpretation of benchmarking data, and stewardship in regulatory and commodity programs, can play a broader role in facilitating the transfer of precision livestock farming and technology to their clients.

          Abstract

          The burgeoning research and applications of technological advances are launching the development of precision livestock farming. Through sensors (cameras, microphones and accelerometers), images, sounds and movements are combined with algorithms to non-invasively monitor animals to detect their welfare and predict productivity. In turn, this remote monitoring of livestock can provide quantitative and early alerts to situations of poor welfare requiring the stockperson’s attention. While swine practitioners’ skills include translation of pig data entry into pig health and well-being indices, many do not yet have enough familiarity to advise their clients on the adoption of precision livestock farming practices. This review, intended for swine veterinarians and specialists, (1) includes an introduction to algorithms and machine learning, (2) summarizes current literature on relevant sensors and sensor network systems, and drawing from industry pig welfare audit criteria, (3) explains how these applications can be used to improve swine welfare and meet current pork production stakeholder expectations. Swine practitioners, by virtue of their animal and client advocacy roles, interpretation of benchmarking data, and stewardship in regulatory and traceability programs, can play a broader role as advisors in the transfer of precision livestock farming technology, and its implications to their clients.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Food security and sustainable intensification.

          The coming decades are likely to see increasing pressures on the global food system, both on the demand side from increasing population and per capita consumption, and on the supply side from greater competition for inputs and from climate change. This paper argues that the magnitude of the challenge is such that action is needed throughout the food system, on moderating demand, reducing waste, improving governance and producing more food. It discusses in detail the last component, arguing that more food should be produced using sustainable intensification (SI) strategies, and explores the rationale behind, and meaning of, this term. It also investigates how SI may interact with other food policy agendas, in particular, land use and biodiversity, animal welfare and human nutrition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations

            The commercial market for technologies to monitor and improve personal health and sports performance is ever expanding. A wide range of smart watches, bands, garments, and patches with embedded sensors, small portable devices and mobile applications now exist to record and provide users with feedback on many different physical performance variables. These variables include cardiorespiratory function, movement patterns, sweat analysis, tissue oxygenation, sleep, emotional state, and changes in cognitive function following concussion. In this review, we have summarized the features and evaluated the characteristics of a cross-section of technologies for health and sports performance according to what the technology is claimed to do, whether it has been validated and is reliable, and if it is suitable for general consumer use. Consumers who are choosing new technology should consider whether it (1) produces desirable (or non-desirable) outcomes, (2) has been developed based on real-world need, and (3) has been tested and proven effective in applied studies in different settings. Among the technologies included in this review, more than half have not been validated through independent research. Only 5% of the technologies have been formally validated. Around 10% of technologies have been developed for and used in research. The value of such technologies for consumer use is debatable, however, because they may require extra time to set up and interpret the data they produce. Looking to the future, the rapidly expanding market of health and sports performance technology has much to offer consumers. To create a competitive advantage, companies producing health and performance technologies should consult with consumers to identify real-world need, and invest in research to prove the effectiveness of their products. To get the best value, consumers should carefully select such products, not only based on their personal needs, but also according to the strength of supporting evidence and effectiveness of the products.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Precision livestock farming technologies for welfare management in intensive livestock systems.

              The worldwide demand for meat and animal products is expected to increase by at least 40% in the next 15 years. The first question is how to achieve high-quality, sustainable and safe meat production that can meet this demand. At the same time, livestock production is currently facing serious problems. Concerns about animal health in relation to food safety and human health are increasing. The European Union wants improved animal welfare and has made a significant investment in it. At the same time, the environmental impact of the livestock sector is a major issue. Finally, it is necessary to ask how the farmer, who is the central figure in this process, will make a living from more sustainable livestock production systems. One tool that might provide real opportunities is precision livestock farming (PLF). In contrast to previous approaches, PLF systems aim to offer a real-time monitoring and management system that focuses on improving the life of the animals by warning when problems arise so that the farmer may take immediate action. Continuous, fully automatic monitoring and improvement of animal health and welfare, product yields and environmental impacts should become possible. This paper presents examples of systems that have already been developed in order to demonstrate the potential benefits of this technology.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                31 March 2019
                April 2019
                : 9
                : 4
                : 133
                Affiliations
                [1 ]Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Rd, East Lansing, MI 48824, USA
                [2 ]Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, 428 S Shaw Ln, East Lansing, MI 48824, USA; yiksteve@ 123456egr.msu.edu
                Author notes
                [* ]Correspondence: gemus@ 123456msu.edu
                Article
                animals-09-00133
                10.3390/ani9040133
                6523486
                30935123
                ce94746f-c3e1-4d8e-a15f-bb8845aae6a0
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 March 2019
                : 25 March 2019
                Categories
                Review

                swine,welfare,critical criteria,precision livestock farming,practitioner,remote monitoring,csia

                Comments

                Comment on this article