22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Parent-offspring conflict in the evolution of vertebrate reproductive mode.

      The American naturalist
      Adaptation, Physiological, Animals, Biological Evolution, Embryonic Development, Female, Mammals, physiology, Maternal-Fetal Exchange, Placenta, anatomy & histology, Pregnancy, Reproduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose and evaluate the hypothesis that parent-offspring conflict over the degree of maternal investment has been one of the main selective factors in the evolution of vertebrate reproductive mode. This hypothesis is supported by data showing that the assumptions of parent-offspring conflict theory are met for relevant taxa; the high number of independent origins of viviparity, matrotrophy (direct maternal-fetal nutrient transfer), and hemochorial placentation (direct fetal access to the maternal bloodstream); the extreme diversity in physiological and morphological aspects of viviparity and placentation, which usually cannot be ascribed adaptive significance in terms of ecological factors; and divergent and convergent patterns in the diversification of placental structure, function, and developmental genetics. This hypothesis is also supported by data demonstrating that embryos and fetuses actively manipulate their interaction with the mother, thereby garnishing increased maternal resources. Our results indicate that selection may favor adaptations of the mother, the fetus, or both in traits related to reproductive mode and that integration of physiological and morphological data with evolutionary ecological data will be required to understand the adaptive significance of interspecific variation in viviparity, matrotrophy, and placentation.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Why do females mate multiply? A review of the genetic benefits.

          The aim of this review is to consider the potential benefits that females may gain from mating more than once in a single reproductive cycle. The relationship between non-genetic and genetic benefits is briefly explored. We suggest that multiple mating for purely non-genetic benefits is unlikely as it invariably leads to the possibility of genetic benefits as well. We begin by briefly reviewing the main models for genetic benefits to mate choice, and the supporting evidence that choice can increase offspring performance and the sexual attractiveness of sons. We then explain how multiple mating can elevate offspring fitness by increasing the number of potential sires that compete, when this occurs in conjunction with mechanisms of paternity biasing that function in copula or post-copulation. We begin by identifying cases where females use pre-copulatory cues to identify mates prior to remating. In the simplest case, females remate because they identify a superior mate and 'trade up' genetically. The main evidence for this process comes from extra-pair copulation in birds. Second, we note other cases where pre-copulatory cues may be less reliable and females mate with several males to promote post-copulatory mechanisms that bias paternity. Although a distinction is drawn between sperm competition and cryptic female choice, we point out that the genetic benefits to polyandry in terms of producing more viable or sexually attractive offspring do not depend on the exact mechanism that leads to biased paternity. Post-copulatory mechanisms of paternity biasing may: (1) reduce genetic incompatibility between male and female genetic contributions to offspring; (2) increase offspring viability if there is a positive correlation between traits favoured post-copulation and those that improve performance under natural selection; (3) increase the ability of sons to gain paternity when they mate with polyandrous females. A third possibility is that genetic diversity among offspring is directly favoured. This can be due to bet-hedging (due to mate assessment errors or temporal fluctuations in the environment), beneficial interactions between less related siblings or the opportunity to preferentially fertilise eggs with sperm of a specific genotype drawn from a range of stored sperm depending on prevailing environmental conditions. We use case studies from the social insects to provide some concrete examples of the role of genetic diversity among progeny in elevating fitness. We conclude that post-copulatory mechanisms provide a more reliable way of selecting a genetically compatible mate than pre-copulatory mate choice. Some of the best evidence for cryptic female choice by sperm selection is due to selection of more compatible sperm. Two future areas of research seem likely to be profitable. First, more experimental evidence is needed demonstrating that multiple mating increases offspring fitness via genetic gains. Second, the role of multiple mating in promoting assortative fertilization and increasing reproductive isolation between populations may help us to understand sympatric speciation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Sexual conflict

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antagonistic coevolution between a bacterium and a bacteriophage.

              Antagonistic coevolution between hosts and parasites is believed to play a pivotal role in host and parasite population dynamics, the evolutionary maintenance of sex and the evolution of parasite virulence. Furthermore, antagonistic coevolution is believed to be responsible for rapid differentiation of both hosts and parasites between geographically structured populations. Yet empirical evidence for host-parasite antagonistic coevolution, and its impact on between-population genetic divergence, is limited. Here we demonstrate a long-term arms race between the infectivity of a viral parasite (bacteriophage; phage) and the resistance of its bacterial host. Coevolution was largely driven by directional selection, with hosts becoming resistant to a wider range of parasite genotypes and parasites infective to a wider range of host genotypes. Coevolution followed divergent trajectories between replicate communities despite establishment with isogenic bacteria and phage, and resulted in bacteria adapted to their own, compared with other, phage populations.
                Bookmark

                Author and article information

                Comments

                Comment on this article