18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mozart K.448 attenuates spontaneous absence seizure and related high-voltage rhythmic spike discharges in Long Evans rats.

      Epilepsy Research
      Acoustic Stimulation, methods, Animals, Auditory Perception, physiology, Behavior, Animal, Cerebral Cortex, physiopathology, Electroencephalography, Epilepsy, Absence, Male, Music, Periodicity, Rats, Rats, Long-Evans

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent research has revealed more evidence supporting the positive effects of music on humans and animals. However, evidence of music's effects on improving epilepsy in animals is sparse. This study aimed to clarify the influence of Mozart's music in Long Evans rats, which are characterized by spontaneous absence epilepsy (SAE) and high-voltage rhythmic spike (HVRS) discharges. Continuous electroencephalograms comprised of HVRS discharges, and behavioral performance were recorded in Long Evans rats (n=5) before, during, and after exposure to the Mozart's Sonata for Two Pianos in D Major, K.448 (Mozart K.448). The same evaluation was repeated after they had been subjected to daily exposure of the music for 20 days. Seizure frequencies and spontaneous HVRS discharges were reduced in all of the SAE rats during and after music exposure compared with the pre-music stage. The average seizure frequencies were 79.8±24.6, 48±15.2, and 33±12.1/h before, during, and after music exposure, respectively. The average run of spike episodes were 84.6±18.4, 52±17.8, and 36.8±16.9/h before, during, and after music exposure, respectively. The seizure frequencies and related run of spike episodes decreased by 39.8% and 38.5% during, and 58.6% and 56.6% post music exposure, respectively. The average run of spike durations and spike numbers also showed significant decreases (reduction by 47.1%, 47.8% during music and 60.8%, 61.3% post music). After daily music exposure for 20 days, the number of HVRS discharges and seizure frequencies during and after music exposure, however, showed no further accumulative reduction or adaptation effect. These results suggest that Mozart K.448 had a positive short-term effect in attenuating the spontaneous HVRS discharges in Long Evans rats. However, the mechanism needs further investigation. Copyright © 2013 Elsevier B.V. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article