21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A π-Halogen Bond of Dibenzofuranones with the Gatekeeper Phe113 in Human Protein Kinase CK2 Leads to Potent Tight Binding Inhibitors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human protein kinase CK2 is an emerging target for neoplastic diseases. Potent lead structures for human CK2 inhibitors are derived from dibenzofuranones. Two new derivatives, 7,9-dichloro-1,2-dihydro-8-hydroxy-4-[(4-methoxyphenylamino)-methylene]dibenzo[ b, d]furan-3(2 H)-one ( 4a) and ( E)-1,3-dichloro-6-[(4-methoxyphenylimino)-methyl]dibenzo[ b, d]furan-2,7-diol ( 5) were tested for inhibition of CK2 and induction of apoptosis in LNCaP cells. Both turned out to be tight binding inhibitors, with IC 50 values of 7 nM ( 4a) and 5 nM ( 5) and an apparent K i value of 0.4 nM for both. Compounds 4a and 5 reduced cellular CK2 activity, indicating cell permeability. Cell viability was substantially impaired in LNCaP cells, as well as apoptosis was induced, which was not appearing in non-neoplastic ARPE-19 cells. Co-crystallization of 4a and 5 revealed an unexpected π-halogen bond of the chloro substituent at C9 with the gatekeeper amino acid Phe113, leading to an inverted binding mode in comparison to parent compound 4b, with the Cl at C6 instead, which was co-crystallized as a control. This indicates that the position of the chloro substituent on ring A of the dibenzofuran scaffold is responsible for an inversion of the binding mode that enhances potency.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Article: not found

          Cancer. Addiction to oncogenes--the Achilles heal of cancer.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            One-thousand-and-one substrates of protein kinase CK2?

            CK2 (formerly termed "casein kinase 2") is a ubiquitous, highly pleiotropic and constitutively active Ser/Thr protein kinase whose implication in neoplasia, cell survival, and virus infection is supported by an increasing number of arguments. Here an updated inventory of 307 CK2 protein substrates is presented. More than one-third of these are implicated in gene expression and protein synthesis as being either transcriptional factors (60) or effectors of DNA/RNA structure (50) or translational elements. Also numerous are signaling proteins and proteins of viral origin or essential to virus life cycle. In comparison, only a minority of CK2 targets (a dozen or so) are classical metabolic enzymes. An analysis of 308 sites phosphorylated by CK2 highlights the paramount relevance of negatively charged side chains that are (by far) predominant over any other residues at positions n+3 (the most crucial one), n+1, and n+2. Based on this signature, it is predictable that proteins phosphorylated by CK2 are much more numerous than those identified to date, and it is possible that CK2 alone contributes to the generation of the eukaryotic phosphoproteome more so than any other individual protein kinase. The possibility that CK2 phosphosites play some global role, e.g., by destabilizing alpha helices, counteracting caspase cleavage, and generating adhesive motifs, will be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy.

              Malignant transformation and maintenance of the malignant phenotype depends on oncogenic and non-oncogenic proteins that are essential to mediate oncogene signaling and to support the altered physiologic demands induced by transformation. Protein kinase CK2 supports key prosurvival signaling pathways and represents a prototypical non-oncogene. In this study, we describe CX-4945, a potent and selective orally bioavailable small molecule inhibitor of CK2. The antiproliferative activity of CX-4945 against cancer cells correlated with expression levels of the CK2α catalytic subunit. Attenuation of PI3K/Akt signaling by CX-4945 was evidenced by dephosphorylation of Akt on the CK2-specific S129 site and the canonical S473 and T308 regulatory sites. CX-4945 caused cell-cycle arrest and selectively induced apoptosis in cancer cells relative to normal cells. In models of angiogenesis, CX-4945 inhibited human umbilical vein endothelial cell migration, tube formation, and blocked CK2-dependent hypoxia-induced factor 1 alpha (HIF-1α) transcription in cancer cells. When administered orally in murine xenograft models, CX-4945 was well tolerated and demonstrated robust antitumor activity with concomitant reductions of the mechanism-based biomarker phospho-p21 (T145). The observed antiproliferative and anti-angiogenic responses to CX-4945 in tumor cells and endothelial cells collectively illustrate that this compound exerts its antitumor effects through inhibition of CK2-dependent signaling in multiple pathways. Finally, CX-4945 is the first orally bioavailable small molecule inhibitor of CK2 to advance into human clinical trials, thereby paving the way for an entirely new class of targeted treatment for cancer. ©2010 AACR.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                17 February 2018
                March 2018
                : 11
                : 1
                : 23
                Affiliations
                [1 ]Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany; Alexander.Schnitzler@ 123456posteo.de (A.S.); karsten.niefind@ 123456uni-koeln.de (K.N.)
                [2 ]Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; gratz.andreas@ 123456gmail.com (A.G.); andre.bo@ 123456web.de (A.B.); wuensch@ 123456uni-muenster.de (B.W.)
                [3 ]Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Kirrberger Str., Geb. 44, D-66421 Homburg, Germany; michaelweyrich@ 123456gmx.de (M.W.); claudia.goetz@ 123456uks.eu (C.G.)
                [4 ]Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; kucklaen@ 123456uni-duesseldorf.de
                Author notes
                [* ]Correspondence: joachim.jose@ 123456uni-muenster.de ; Tel.: +49-251-8332-200
                Author information
                https://orcid.org/0000-0002-0183-6315
                https://orcid.org/0000-0002-0183-6315
                https://orcid.org/0000-0002-0666-2676
                Article
                pharmaceuticals-11-00023
                10.3390/ph11010023
                5874719
                29462988
                ce9fb154-5d92-4fcd-8cee-84749512dced
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 November 2017
                : 14 February 2018
                Categories
                Article

                human protein kinase ck2,dibenzofuran,tight binding inhibitor,crystal structure,π-halogen bond,apoptosis induction

                Comments

                Comment on this article